共查询到20条相似文献,搜索用时 15 毫秒
1.
Extremely low‐profile wideband dual‐polarized microstrip antenna for micro‐base‐station applications 下载免费PDF全文
A wideband dual‐polarized microstrip antenna is presented. By designing the coplanar parasitic patches and modified feed probes, antenna profile is decreased significantly. Shorted pins are used and 34 dB isolation between input ports is then achieved. A phase difference feed network is introduced to suppress higher‐order modes and reduce the cross polarization to ?27 dB. To verify the design, a prototype of the antenna is fabricated and experimentally studied. Measured results show that 30.3% operating bandwidth (VSWR < 1.5) and good dual linear polarization characteristics with a profile height as low as 0.08λ are achieved. Due to the very compact configuration, the proposed antenna is suitable for micro‐base‐station applications. 相似文献
2.
In this paper, a novel broadband dual‐polarization patch antenna is proposed. Antisymmetric Γ feeding network is applied to excite the radiating patch etched on the upper side of the horizontal substrate, which could minimize the undesired radiation from the probe and extend the impedance bandwidth. For verifying the proposed approach, a prototype is fabricated and measured, the simulated and measured results show the antenna has a wide impedance bandwidth of 48% (1.66‐2.71 GHz) for S11 < ?10 dB, as well as stable radiation gain around 9.5 dBi with low cross‐polarization. In addition, the total height of the antenna is only 0.17 λ0 ( λ0 is the free space wavelength of central frequency) and high port‐to‐port isolation is better than 30 dB. The characteristics of the proposed antenna illustrate it can be an indication for a micro base station in the mobile communication system. 相似文献
3.
This article presents a simple design of circularly polarized (CP) antenna with low profile and wideband operation characteristics. To achieve these desirable features, a truncated corner squared patch is chosen as primary radiating source and surrounded by periodic metallic plates for bandwidth enhancement. Notably, all the radiating elements are designed on a single layer of substrate using printed circuit techniques, which significantly reduces the design complexity. The final prototype with overall size of 0.60λo × 0.60λo × 0.05λo (λo is free‐space wavelength at the center operating frequency) was fabricated and tested. Measured results show that the proposed antenna has wide operation bandwidth of 19.7% (5.1‐6.2 GHz). Additionally, broadside gain ranging from 5.0 to 6.9 dBic is also attained within the operating band. In comparison with the other reported antennas in literature, the proposed one has the simplest design architecture with competitive operating bandwidth. 相似文献
4.
A low‐profile wideband dual‐polarized antenna with high gain, low gain variations, and low cross‐polarization for the fifth generation (5G) indoor distribution system is proposed. By using circular‐thread vase‐shaped structure, a low profile of 0.23λ0 (λ0 is the free‐space wavelength at the starting frequency) as well as low gain variation feature can be achieved by the vertically polarized (VP) radiating element. An eight‐way power divider network is employed to feed the horizontally polarized (HP) dipoles so that wideband performance is obtained. Here, eight pairs of arc‐shaped parasitic strips are used to broaden the bandwidth, and eight pairs of director elements are introduced to enhance the gain and reduce the gain variations. In addition, the protruded stubs that are extended from the circular ground plane will help to reduce the cross polarization in the VP direction. Measured results show that a bandwidth of 46.5% (3.3‐5.3 GHz) (S11 < ?10 dB) with a gain of 0.85 ± 0.35 dBi, and another bandwidth of 85.0% (2.5‐6.2 GHz) with a gain of 4.75 ± 1.75 dBi can be realized in the HP and VP directions, respectively. Furthermore, high isolation (>27 dB) and low cross polarization (<?24 dB) can also be attained. Therefore, the proposed antenna is a good candidate for 5G indoor distributed system. 相似文献
5.
A novel design of dual‐frequency dual‐sense circularly polarized (CP) substrate integrated waveguide (SIW) cavity‐backed slot antenna is presented for dual‐band wireless communication systems. The proposed antenna consists of square SIW cavity, asymmetrical bow‐tie‐shaped cross slot and probe feed. Due to use of asymmetrical bow‐tie‐shaped cross slot, circularly polarized wave radiates at two different frequencies with opposite sense of polarizations. The RHCP radiation occurs at (10.45‐10.54) GHz (Lower band) and LHCP occurs at (11.26‐11.34) GHz (Upper band). Moreover, in each band, sense of polarization can be change by changing the feed position. The front to back radiation ratio (FTBRR) is more than 10.5 dB and cross polarization level is lower than ?20 dB in both the bands. 相似文献
6.
In this article, a dual‐band and wideband omnidirectional circularly polarized (CP) antenna based on the vanadium dioxide (VO2) is investigated. The operating bandwidth of such an antenna can be regulated by altering the outside temperature (T), which is attained by the insulator‐metal transition of VO2. The omnidirectional CP antenna is based on a loop antenna‐dipole model, which is composed of four tilted metal and VO2 resonant units that are loaded around a cuboid and a feeding network for broadening bandwidth. The simulated results show that when T = 50°C (State I), the 10‐dB impedance bandwidth is 45.7% (1.67‐2.66 GHz), and the 3‐dB axial ratio (AR) bandwidth is 40% (1.9‐2.85 GHz). When T = 80°C (State II), the 10‐dB impedance bandwidth is 13.8% (1.62‐1.86 GHz), and the 3‐dB AR bandwidth is 21.8% (1.68‐2.09 GHz). In order to further characterize the concept of the proposed antenna, the related parameters of such an antenna are studied using simulation software HFSS. 相似文献
7.
This article presents a dual‐polarized filtering patch antenna, which uses two orthogonal modes (TE210/TE120) of the substrate integrated cavity (SIC) to couple with two orthogonal modes (TM10/TM01) of the patch by the cross slot, respectively. The second‐order filtering response on dual polarizations can be achieved by using just one SIC resonator and one slotted square patch, which display simple structure of the proposed antenna. The slotted square patch provides a new way to obtain same external quality factor of the radiator on dual polarization, which makes the performances on two polarizations agree well with each other when changing the bandwidth. High isolation can be achieved by controlling the space of the vias of the SIC. Radiation nulls can be produced by connecting the coupled lines with the feeding lines in parallel. A prototype with the entire height of 0.019 λ0 (λ0 is the free‐space wavelength at center frequency) achieves a 10‐dB bandwidth of 1.6%, the gain of 4.9 dBi at the center frequency, the port isolation of 43 dB, and the out‐of‐band rejection level of 25 dB. 相似文献
8.
This study investigates the use of a polarization rotation reflective surface (PRRS) to construct a wideband, wide‐beam, low‐profile circularly polarized (CP) patch antenna. The device is composed of a feeding monopole antenna and a novel PRRS‐based dual‐patch artificial magnetic conductor (AMC) cell structure. The PRRS has two polarization rotation (PR) frequency points, generated by properly adjusting the width between square and L‐shaped metallic patches. A large PR band of 35.5% (5.1‐7.3 GHz) was achieved by combining two adjacent PR frequency points. The PRRS‐based patch antenna impedance bandwidth was measured to be 28.6% (5.1‐6.35 GHz), with a 3 dB axial ratio (AR) bandwidth of 21.8% (4.8‐6.4 GHz) and a profile of 0.045λ0. Additionally, the proposed antenna exhibited the largest AR beamwidth (to our knowledge) of 175° and 128° in the xoz and yoz planes, respectively. It also produced a high broadside gain of 6.7 dBic within the operational bandwidth. 相似文献
9.
In this article, a dual‐polarized low‐profile microstrip patch antenna with U‐ or M‐shaped feed network is presented. The U‐ or M‐shaped feed network is printed on the same layer, which can achieve dual bands (5.3 and 5.8 GHz) and low profile (0.06 λg). Dual polarizations and high isolation are realized by making use of a quasi‐cross‐shaped slot feeding. Moreover, the port isolation is better than 25 dB, and the antenna gain is above 8.4 dBi for the two ports. And the cross‐polarization levels in both E and H planes are better than ‐30 dB for the two polarization ports, respectively. The design is suitable for array application in MIMO system. Details of the proposed design and experimental results are presented and well agreed. 相似文献
10.
A square dielectric patch (DP) resonator fusing with the bottom substrate is studied for designing low‐profile circularly polarized (CP) antenna. Based on the theoretical investigation using the constructed analysis model, it can be found that the proposed DP resonator possesses a pair of degenerate dominate modes (TM101 and TM011), which can be split by introducing perturbations on the DP resonator and then used to design CP antenna fed by a microstrip line directly. To verify the proposed idea, a 2 × 2 array fed by a dual Marchand balun network is designed and implemented. Reasonable agreement between the measured and simulated results is observed. Experimental results show that a measured impedance bandwidth is 380 MHz (5.18‐5.56 GHz) for |S11| < ?10 dB and the 3‐dB axial ratio bandwidth is 90 MHz (5.32‐5.41 GHz). The measured gain is up to 11.77 dBic with a cross polarization of about ?20 dB in the boresight direction. 相似文献
11.
This article deals with the design of a broadband cavity‐backed microstrip‐fed wide‐slot antenna array for L‐band applications. For verification purpose, a sample 1 × 4‐element antenna array has been designed, manufactured and tested. Experimental results have shown satisfactory agreement with the simulation. The proposed antenna array exhibits a measured impedance bandwidth of 1.4 GHz (90%) with frequency of 0.85 to 2.25 GHz and the gain is higher than 11 dBi. The designed antenna has small size and low weight and can be fabricated using a low‐cost fabrication process for easy integration with RF circuits and microwave components. This work is useful for some radar applications and radio frequency identification systems. 相似文献
12.
In this article, a novel substrate integrated low‐profile dual‐band magneto‐electric (ME) dipole antenna is proposed. The entire antenna is constructed by four‐layer printed circuit boards (PCBs). Consequently, the height of the proposed antenna is decreased from 0.25λ0 to 0.11λ0 (λ0 is the free‐space wavelength at 5.5 GHz). By introducing rectangular patches with different sizes as electric dipoles, dual operating bands are achieved. Meanwhile, for the purpose of improving the impedance matching at the lower frequency band, a pair of complementary split‐ring resonators (CSRRs) is etched on the larger rectangular patches. Moreover, the short walls composed of plated through holes operate as a magnetic dipole. The antenna is fed by an equivalent wideband microstrip‐to‐parallel stripline balun. The results show that the antenna obtains dual bandwidths of 4.31‐4.71 GHz (8.8%) and 5.07‐5.89 GHz (14.9%) with VSWR <2, which can be applied for C‐band and 5G WiFi. Over the dual operating bands, stable gain and unidirectional radiation patterns with low polarization and low back lobe are also obtained. 相似文献
13.
The contribution of this work is to propose a cavity‐based antenna with both dual‐polarization and bandpass filter characteristics. Proper cavity resonators and antenna based on the substrate integrated waveguide (SIW) technology are designed utilizing the low temperature co‐fired ceramics (LTCC) for demonstration. By properly arranging and coupling the cavities, a shaping of filter‐like response for the antenna gain and input return loss can be obtained. Measures for achieving a good isolation and a low cross‐polarization level have also been taken into account during the design procedure. A 4th‐order prototype working in the Ka‐band is designed and fabricated. Investigations show that the antenna presents a good isolation below ‐29 dB across the operating bandwidth, together with a cross‐polarization level lower than ‐25 dB at the center working frequency. The performance of the prototype has been verified in the measurement. 相似文献
14.
A dual‐band antenna array is proposed for the application of base station (BS) in 2G/3G/long term evaluation (LTE) mobile communications. This antenna consists of two independent ±45° dual‐polarized arrays, one of which operates from 1.71 to 2.17 GHz, and the other of which is designed from 2.5 to 2.69 GHz. The proposed BS antenna array has a high isolation of greater than 29 dB and high front‐to‐back ratio of more than 26 dB at the operating frequencies. The measured peak gain is 17.9 and 18.1 dBi for the lower and upper bands, respectively, and the cross polarizations isolation (CPI)(within ±60º of the mainlobe) is 16 dB lower than the broadside co‐polarization. It was confirmed that the proposed antenna array meets the communication standards in China. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:154–163, 2016. 相似文献
15.
In this article, a novel dual‐band circularly polarized (CP) dielectric resonator antenna (DRA) for millimeter‐wave (MMW) band is presented. The rectangular dielectric resonator with layered truncated corners is excited by a microstrip‐coupled cross‐slot. CP radiations in the lower band are realized by utilizing two quasi‐TE111 modes operating at 21.7 GHz and 23.8 GHz, while CP radiations in the upper band are obtained by exciting a quasi‐TE113 mode at 28.2 GHz. The dual‐band DRA is fabricated and measured. Due to the higher order mode, the average gain of the DRA in the upper band is about 3 dB higher than that in the lower band. The measured impedance bandwidths (|S11| < ?10 dB) are 17.0% (20.5‐24.3 GHz) and 15.2% (26.1‐30.4 GHz), while the measured axial ratio (AR) bandwidths (AR < 3 dB) are 12.8% (21.2‐24.1 GHz) and 5% (27.4‐28.8 GHz). In addition, the peak gain values are 5 and 8 dBic. 相似文献
16.
The purpose of this study is to investigate the application of a polarization conversion meatasurface for constructing a low profile, wideband circularly polarized slot antenna, which consists of a new Polarization conversion metasurface (PCM)‐based square‐corner‐cut artificial magnetic conductor cell structure and a feeding slot antenna. PCM possesses two frequency points of polarization rotation (PR), produced by appropriately adjusting width between the two triangular metallic patches. A 39.3% (4.7‐7 GHz) of big PR band was realized through the combination of two neighboring PR frequency points. The impedance bandwidth of PCM based patch antenna was measured to be 43.5% (4.5‐7 GHz), with 17.2% (5.3‐6.3 GHz) of 3 dB axial ratio (AR) bandwidth and 0.045λ0 of profile. It also generated 7.3 dBic of high broadside gain in operational bandwidth. 相似文献
17.
A low profile circularly polarized (CP) antenna with reconfigurable polarization is designed and presented, which can radiate omnidirectional patterns that can be switched between left‐hand circularly polarized (LHCP) and right‐hand circularly polarized (RHCP). A pair of arc‐shaped complementary dipoles is acted as reconfigurable elements by bridging four pin diodes at the dipole arced arms. A meander phase shift line is employed to connected the arc dipole arms and plate cavity to adjust the phase relationship of two sources. The proposed antenna exhibits the omnidirectional radiation pattern by combining six identical elements placed in a circular array configuration. 24 p‐i‐n diodes are exploited to six elements, by manipulating the dc bias voltage across the diodes, the polarization state of the antenna can be switched. The patterns of the antenna are similar to that of a dipole, but its size is only about Φ0.87 × 0.029λ0 at 5.8 GHz. The overlapped bandwidth of measured 3‐dB axial ratio (AR) and 10‐dB return loss is 5.724‐5.87 and 5.738‐5.91 GHz for two polarization states, which are right on the target of ISM band. It can be well adapted to medical diagnosis systems. 相似文献
18.
A low‐profile self‐triplexed slot antenna is proposed for multiple system integrations. The antenna comprises of hybrid substrate integrated waveguide (SIW) cavity (a combination of a half‐mode circular and half‐mode rectangular SIW), radiating slot, and feeding network. A slot is imprinted on the upper metal‐layer of the SIW which splits the cavity into three radiating sections. It offers tri‐frequency bands when each section is excited separately. By finely tuning the antenna dimensions, it produces three frequency‐bands around 5.57, 7.17, and 7.65 GHz simultaneously utilizes a single slot with maintaining the intrinsic input‐port isolation better than 20 dB. This property helps to introduce the self‐triplexing phenomenon. Compared with the conventional multiband antennas that use an extra circuitry to ensure the port isolations, this design preserves compactness and easy to integrate with planar circuits Moreover, the proposed antenna is fabricated and the measured results mutually agreed with the simulated counterparts. The proposed design can be a feasible option for mobile transceiver applications. 相似文献
19.
Yun Zhao 《国际射频与微波计算机辅助工程杂志》2019,29(2)
A wideband H‐plane horn antenna based on quasi‐corrugated substrate integrated waveguide (SIW) technology with a very low profile is presented in this article. Open‐circuited microstrip stubs are applied to create electric sidewalls of the quasi‐corrugated SIW structure. The quasi‐corrugated SIW H‐plane horn antenna shows high performance and simple structure. A specify‐shaped horn aperture is utilized, so that the poor impedance matching owing to the structure restriction can be smoothened. The structure is simulated by ANSYS HFSS and a prototype is fabricated. The measured results match well with the simulated ones. An enhanced impedance bandwidth ranging from 5.3 GHz to 19 GHz (VSWR < 2.5) is achieved. The presented antenna also brings out stable radiation beam over the same frequency band. 相似文献
20.
Planar dual‐mode wideband antenna using short‐circuited‐strips loaded slotline radiator: Operation principle,design, and validation 下载免费PDF全文
A novel dual‐mode planar wideband slotline antenna is proposed. A pair of short‐circuited strips is symmetrically introduced along the slotline resonator near the nulls of electric field distribution of the second odd‐order resonant mode. In this way, two resonant modes are excited in a single slotline radiator and are both used for radiation in a wide frequency range. With the help of these paired strips, the dominant half‐wavelength mode can be gradually moved to the three halves‐wavelength mode, resulting to achieve a wideband radiation with two resonances. Prototype antennas are then fabricated to experimentally validate the principle and design approach of the proposed planar slotline antenna. It is shown that the proposed slotline antenna's impedance bandwidth could be effectively increased to 37.6% while keeping its inherent narrow slot configuration with length‐to‐width ratio (LWR) up to 42.00. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:573–581, 2015. 相似文献