首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Shpilka & Wigderson (IEEE conference on computational complexity, vol 87, 1999) had posed the problem of proving exponential lower bounds for (nonhomogeneous) depth-three arithmetic circuits with bounded bottom fanin over a field \({{\mathbb{F}}}\) of characteristic zero. We resolve this problem by proving a \({N^{\Omega(\frac{d}{\tau})}}\) lower bound for (nonhomogeneous) depth-three arithmetic circuits with bottom fanin at most \({\tau}\) computing an explicit \({N}\)-variate polynomial of degree \({d}\) over \({{\mathbb{F}}}\). Meanwhile, Nisan & Wigderson (Comp Complex 6(3):217–234, 1997) had posed the problem of proving super-polynomial lower bounds for homogeneous depth-five arithmetic circuits. Over fields of characteristic zero, we show a lower bound of \({N^{\Omega(\sqrt{d})}}\) for homogeneous depth-five circuits (resp. also for depth-three circuits) with bottom fanin at most \({N^{\mu}}\), for any fixed \({\mu < 1}\). This resolves the problem posed by Nisan and Wigderson only partially because of the added restriction on the bottom fanin (a general homogeneous depth-five circuit has bottom fanin at most \({N}\)).  相似文献   

2.
XGC1 and M3D-C 1 are two fusion plasma simulation codes being developed at Princeton Plasma Physics Laboratory. XGC1 uses the particle-in-cell method to simulate gyrokinetic neoclassical physics and turbulence (Chang et al. Phys Plasmas 16(5):056108, 2009; Ku et al. Nucl Fusion 49:115021, 2009; Admas et al. J Phys 180(1):012036, 2009). M3D-\(C^1\) solves the two-fluid resistive magnetohydrodynamic equations with the \(C^1\) finite elements (Jardin J comput phys 200(1):133–152, 2004; Jardin et al. J comput Phys 226(2):2146–2174, 2007; Ferraro and Jardin J comput Phys 228(20):7742–7770, 2009; Jardin J comput Phys 231(3):832–838, 2012; Jardin et al. Comput Sci Discov 5(1):014002, 2012; Ferraro et al. Sci Discov Adv Comput, 2012; Ferraro et al. International sherwood fusion theory conference, 2014). This paper presents the software tools and libraries that were combined to form the geometry and automatic meshing procedures for these codes. Specific consideration has been given to satisfy the mesh configuration and element shape quality constraints of XGC1 and M3D-\(C^1\).  相似文献   

3.
The recently proposed (Güney and Hillery in Phys Rev A 90:062121, 2014; Phys Rev A 91:052110, 2015) group theoretical approach to the problem of violating the Bell inequalities is applied to \(S_4\) group. The Bell inequalities based on the choice of three orbits in the representation space corresponding to standard representation of \(S_4\) are derived and their violation is described. The corresponding nonlocal games are analyzed.  相似文献   

4.
We initiate studying the Remote Set Problem (\({\mathsf{RSP}}\)) on lattices, which given a lattice asks to find a set of points containing a point which is far from the lattice. We show a polynomial-time deterministic algorithm that on rank n lattice \({\mathcal{L}}\) outputs a set of points, at least one of which is \({\sqrt{\log n / n} \cdot \rho(\mathcal{L})}\) -far from \({\mathcal{L}}\) , where \({\rho(\mathcal{L})}\) stands for the covering radius of \({\mathcal{L}}\) (i.e., the maximum possible distance of a point in space from \({\mathcal{L}}\)). As an application, we show that the covering radius problem with approximation factor \({\sqrt{n / \log n}}\) lies in the complexity class \({\mathsf{NP}}\) , improving a result of Guruswami et al. (Comput Complex 14(2): 90–121, 2005) by a factor of \({\sqrt{\log n}}\) .Our results apply to any \({\ell_p}\) norm for \({2 \leq p \leq \infty}\) with the same approximation factors (except a loss of \({\sqrt{\log \log n}}\) for \({p = \infty}\)). In addition, we show that the output of our algorithm for \({\mathsf{RSP}}\) contains a point whose \({\ell_2}\) distance from \({\mathcal{L}}\) is at least \({(\log n/n)^{1/p} \cdot \rho^{(p)}(\mathcal{L})}\) , where \({\rho^{(p)}(\mathcal{L})}\) is the covering radius of \({\mathcal{L}}\) measured with respect to the \({\ell_p}\) norm. The proof technique involves a theorem on balancing vectors due to Banaszczyk (Random Struct Algorithms 12(4):351–360, 1998) and the “six standard deviations” theorem of Spencer (Trans Am Math Soc 289(2):679–706, 1985).  相似文献   

5.
We begin by investigating relationships between two forms of Hilbert–Schmidt two-rebit and two-qubit “separability functions”—those recently advanced by Lovas and Andai (J Phys A Math Theor 50(29):295303, 2017), and those earlier presented by Slater (J Phys A 40(47):14279, 2007). In the Lovas–Andai framework, the independent variable \(\varepsilon \in [0,1]\) is the ratio \(\sigma (V)\) of the singular values of the \(2 \times 2\) matrix \(V=D_2^{1/2} D_1^{-1/2}\) formed from the two \(2 \times 2\) diagonal blocks (\(D_1, D_2\)) of a \(4 \times 4\) density matrix \(D= \left||\rho _{ij}\right||\). In the Slater setting, the independent variable \(\mu \) is the diagonal-entry ratio \(\sqrt{\frac{\rho _{11} \rho _ {44}}{\rho _ {22} \rho _ {33}}}\)—with, of central importance, \(\mu =\varepsilon \) or \(\mu =\frac{1}{\varepsilon }\) when both \(D_1\) and \(D_2\) are themselves diagonal. Lovas and Andai established that their two-rebit “separability function” \(\tilde{\chi }_1 (\varepsilon )\) (\(\approx \varepsilon \)) yields the previously conjectured Hilbert–Schmidt separability probability of \(\frac{29}{64}\). We are able, in the Slater framework (using cylindrical algebraic decompositions [CAD] to enforce positivity constraints), to reproduce this result. Further, we newly find its two-qubit, two-quater[nionic]-bit and “two-octo[nionic]-bit” counterparts, \(\tilde{\chi _2}(\varepsilon ) =\frac{1}{3} \varepsilon ^2 \left( 4-\varepsilon ^2\right) \), \(\tilde{\chi _4}(\varepsilon ) =\frac{1}{35} \varepsilon ^4 \left( 15 \varepsilon ^4-64 \varepsilon ^2+84\right) \) and \(\tilde{\chi _8} (\varepsilon )= \frac{1}{1287}\varepsilon ^8 \left( 1155 \varepsilon ^8-7680 \varepsilon ^6+20160 \varepsilon ^4-25088 \varepsilon ^2+12740\right) \). These immediately lead to predictions of Hilbert–Schmidt separability/PPT-probabilities of \(\frac{8}{33}\), \(\frac{26}{323}\) and \(\frac{44482}{4091349}\), in full agreement with those of the “concise formula” (Slater in J Phys A 46:445302, 2013), and, additionally, of a “specialized induced measure” formula. Then, we find a Lovas–Andai “master formula,” \(\tilde{\chi _d}(\varepsilon )= \frac{\varepsilon ^d \Gamma (d+1)^3 \, _3\tilde{F}_2\left( -\frac{d}{2},\frac{d}{2},d;\frac{d}{2}+1,\frac{3 d}{2}+1;\varepsilon ^2\right) }{\Gamma \left( \frac{d}{2}+1\right) ^2}\), encompassing both even and odd values of d. Remarkably, we are able to obtain the \(\tilde{\chi _d}(\varepsilon )\) formulas, \(d=1,2,4\), applicable to full (9-, 15-, 27-) dimensional sets of density matrices, by analyzing (6-, 9, 15-) dimensional sets, with not only diagonal \(D_1\) and \(D_2\), but also an additional pair of nullified entries. Nullification of a further pair still leads to X-matrices, for which a distinctly different, simple Dyson-index phenomenon is noted. C. Koutschan, then, using his HolonomicFunctions program, develops an order-4 recurrence satisfied by the predictions of the several formulas, establishing their equivalence. A two-qubit separability probability of \(1-\frac{256}{27 \pi ^2}\) is obtained based on the operator monotone function \(\sqrt{x}\), with the use of \(\tilde{\chi _2}(\varepsilon )\).  相似文献   

6.
In this paper, we investigate two uniform asymptotic approximations as well as some spectral properties of the eigenfunctions of the weighted finite Fourier transform operator, defined by \({\displaystyle {\mathcal {F}}_c^{(\alpha )} f(x)=\int _{-1}^1 e^{icxy} f(y)\,(1-y^2)^{\alpha }\, dy.}\) Here, \( c >0, \alpha \ge -1/2\) are two fixed real numbers. These eigenfunctions are called generalized prolate spheroidal wave functions (GPSWFs) and they are firstly introduced and studied in Wang and Zhang (Appl Comput Harmon Anal 29(3):303–329, 2010). The present study is motivated by the promising concrete applications of the GPSWFs in various scientific area such as numerical analysis, mathematical physics and signal processing. We should mention that these two uniform approximation results of the GPSWFs can be considered as generalizations of the results given in the joint work of one of us (Bonami and Karoui in Constr Approx 43(1):15–45, 2016). As it will be seen, these generalizations require some involved extra work, especially in the case where \(\alpha > 1/2.\) By using the uniform asymptotic approximations of the GPSWFs, we prove the super-exponential decay rate of the eigenvalues of the operator \({\mathcal {F}}_c^{(\alpha )}\) in the case where \(0<\alpha < 3/2.\) Moreover, by computing the trace and an estimate of the norm of the operator \({\displaystyle {\mathcal {Q}}_c^{(\alpha )}=\frac{c}{2\pi } {\mathcal {F}}_c^{{(\alpha )}^*} \circ {\mathcal {F}}_c^{(\alpha )},}\) we give a lower bound for the counting number of the eigenvalues of \(Q_c^{(\alpha )},\) when \(c>>1.\) Finally, we provide the reader with some numerical examples that illustrate the different results of this work.  相似文献   

7.
In this paper, we study direct discontinuous Galerkin method (Liu and Yan in SIAM J Numer Anal 47(1):475–698, 2009) and its variations (Liu and Yan in Commun Comput Phys 8(3):541–564, 2010; Vidden and Yan in J Comput Math 31(6):638–662, 2013; Yan in J Sci Comput 54(2–3):663–683, 2013) for 2nd order elliptic problems. A priori error estimate under energy norm is established for all four methods. Optimal error estimate under \(L^2\) norm is obtained for DDG method with interface correction (Liu and Yan in Commun Comput Phys 8(3):541–564, 2010) and symmetric DDG method (Vidden and Yan in J Comput Math 31(6):638–662, 2013). A series of numerical examples are carried out to illustrate the accuracy and capability of the schemes. Numerically we obtain optimal \((k+1)\)th order convergence for DDG method with interface correction and symmetric DDG method on nonuniform and unstructured triangular meshes. An interface problem with discontinuous diffusion coefficients is investigated and optimal \((k+1)\)th order accuracy is obtained. Peak solutions with sharp transitions are captured well. Highly oscillatory wave solutions of Helmholz equation are well resolved.  相似文献   

8.
The construction of unextendible maximally entangled bases is tightly related to quantum information processing like local state discrimination. We put forward two constructions of UMEBs in \({\mathbb {C}}^{pd}\otimes {\mathbb {C}}^{qd}\)(\(p\le q\)) based on the constructions of UMEBs in \({\mathbb {C}}^{d}\otimes {\mathbb {C}}^{d}\) and in \({\mathbb {C}}^{p}\otimes {\mathbb {C}}^{q}\), which generalizes the results in Guo (Phys Rev A 94:052302, 2016) by two approaches. Two different 48-member UMEBs in \({\mathbb {C}}^{6}\otimes {\mathbb {C}}^{9}\) have been constructed in detail.  相似文献   

9.
10.
We study the problem of non-preemptively scheduling n jobs, each job j with a release time \(t_j\), a deadline \(d_j\), and a processing time \(p_j\), on m parallel identical machines. Cieliebak et al. (2004) considered the two constraints \(|d_j-t_j|\le \lambda {}p_j\) and \(|d_j-t_j|\le p_j +\sigma \) and showed the problem to be NP-hard for any \(\lambda >1\) and for any \(\sigma \ge 2\). We complement their results by parameterized complexity studies: we show that, for any \(\lambda >1\), the problem remains weakly NP-hard even for \(m=2\) and strongly W[1]-hard parameterized by m. We present a pseudo-polynomial-time algorithm for constant m and \(\lambda \) and a fixed-parameter tractability result for the parameter m combined with \(\sigma \).  相似文献   

11.
We propose a new technique for computing highly accurate approximations to linear functionals in terms of Galerkin approximations. We illustrate the technique on a simple model problem, namely, that of the approximation of J(u), where \(J(\cdot )\) is a very smooth functional and u is the solution of a Poisson problem; we assume that the solution u and the solution of the adjoint problem are both very smooth. It is known that, if \(u_h\) is the approximation given by the continuous Galerkin method with piecewise polynomials of degree \(k>0\), then, as a direct consequence of its property of Galerkin orthogonality, the functional \(J(u_h)\) converges to J(u) with a rate of order \(h^{2k}\). We show how to define approximations to J(u), with a computational effort about twice of that of computing \(J(u_h)\), which converge with a rate of order \(h^{4k}\). The new technique combines the adjoint-recovery method for providing precise approximate functionals by Pierce and Giles (SIAM Rev 42(2):247–264, 2000), which was devised specifically for numerical approximations without a Galerkin orthogonality property, and the accuracy-enhancing convolution technique of Bramble and Schatz (Math Comput 31(137):94–111, 1977), which was devised specifically for numerical methods satisfying a Galerkin orthogonality property, that is, for finite element methods like, for example, continuous Galerkin, mixed, discontinuous Galerkin and the so-called hybridizable discontinuous Galerkin methods. For the latter methods, we present numerical experiments, for \(k=1,2,3\) in one-space dimension and for \(k=1,2\) in two-space dimensions, which show that \(J(u_h)\) converges to J(u) with order \(h^{2k+1}\) and that the new approximations converges with order \(h^{4k}\). The numerical experiments also indicate, for the p-version of the method, that the rate of exponential convergence of the new approximations is about twice that of \(J(u_h)\).  相似文献   

12.
Let \(G=(V,E)\) be an unweighted undirected graph with n vertices and m edges, and let \(k>2\) be an integer. We present a routing scheme with a poly-logarithmic header size, that given a source s and a destination t at distance \(\varDelta \) from s, routes a message from s to t on a path whose length is \(O(k\varDelta +m^{1/k})\). The total space used by our routing scheme is \(mn^{O(1/\sqrt{\log n})}\), which is almost linear in the number of edges of the graph. We present also a routing scheme with \(n^{O(1/\sqrt{\log n})}\) header size, and the same stretch (up to constant factors). In this routing scheme, the routing table of every \(v\in V\) is at most \(kn^{O(1/\sqrt{\log n})}deg(v)\), where deg(v) is the degree of v in G. Our results are obtained by combining a general technique of Bernstein (2009), that was presented in the context of dynamic graph algorithms, with several new ideas and observations.  相似文献   

13.
We investigate the approximation ratio of the solutions achieved after a one-round walk in linear congestion games. We consider the social functions Sum, defined as the sum of the players’ costs, and Max, defined as the maximum cost per player, as a measure of the quality of a given solution. For the social function Sum and one-round walks starting from the empty strategy profile, we close the gap between the upper bound of \(2+\sqrt{5}\approx 4.24\) given in Christodoulou et al. (Proceedings of the 23rd International Symposium on Theoretical Aspects of Computer Science (STACS), LNCS, vol. 3884, pp. 349–360, Springer, Berlin, 2006) and the lower bound of 4 derived in Caragiannis et al. (Proceedings of the 33rd International Colloquium on Automata, Languages and Programming (ICALP), LNCS, vol. 4051, pp. 311–322, Springer, Berlin, 2006) by providing a matching lower bound whose construction and analysis require non-trivial arguments. For the social function Max, for which, to the best of our knowledge, no results were known prior to this work, we show an approximation ratio of \(\Theta(\sqrt[4]{n^{3}})\) (resp. \(\Theta(n\sqrt{n})\)), where n is the number of players, for one-round walks starting from the empty (resp. an arbitrary) strategy profile.  相似文献   

14.
New hybridized discontinuous Galerkin (HDG) methods for the interface problem for elliptic equations are proposed. Unknown functions of our schemes are \(u_h\) in elements and \(\hat{u}_h\) on inter-element edges. That is, we formulate our schemes without introducing the flux variable. We assume that subdomains \(\Omega _1\) and \(\Omega _2\) are polyhedral domains and that the interface \(\Gamma =\partial \Omega _1\cap \partial \Omega _2\) is polyhedral surface or polygon. Moreover, \(\Gamma \) is assumed to be expressed as the union of edges of some elements. We deal with the case where the interface is transversely connected with the boundary of the whole domain \(\overline{\Omega }=\overline{\Omega _1\cap \Omega _2}\). Consequently, the solution u of the interface problem may not have a sufficient regularity, say \(u\in H^2(\Omega )\) or \(u|_{\Omega _1}\in H^2(\Omega _1)\), \(u|_{\Omega _2}\in H^2(\Omega _2)\). We succeed in deriving optimal order error estimates in an HDG norm and the \(L^2\) norm under low regularity assumptions of solutions, say \(u|_{\Omega _1}\in H^{1+s}(\Omega _1)\) and \(u|_{\Omega _2}\in H^{1+s}(\Omega _2)\) for some \(s\in (1/2,1]\), where \(H^{1+s}\) denotes the fractional order Sobolev space. Numerical examples to validate our results are also presented.  相似文献   

15.
Quantum coherence is an important physical resource in quantum computation and quantum information processing. Among the appropriate measures of quantum coherence, the \(l_1\) norm of coherence is a widely known coherence measure and easy to use quantifiers. In this paper, we discuss the superadditivity inequalities and strong subadditivity of the \(l_1\) norm of coherence. We show that the \(l_1\) norm of coherence is superadditive for all states, which gives a positive answer to a conjecture in Liu and Li (Int J Theor Phys 56:494, 2017).  相似文献   

16.
The Shortley–Weller method is a standard central finite-difference-method for solving the Poisson equation in irregular domains with Dirichlet boundary conditions. It is well known that the Shortley–Weller method produces second-order accurate solutions and it has been numerically observed that the solution gradients are also second-order accurate; a property known as super-convergence. The super-convergence was proved in the \(L^{2}\) norm in Yoon and Min (J Sci Comput 67(2):602–617, 2016). In this article, we present a proof for the super-convergence in the \(L^{\infty }\) norm.  相似文献   

17.
The Probabilistically Checkable Proof (PCP) theorem (Arora and Safra in J ACM 45(1):70–122, 1998; Arora et al. in J ACM 45(3):501–555, 1998) asserts the existence of proofs that can be verified by reading a very small part of the proof. Since the discovery of the theorem, there has been a considerable work on improving the theorem in terms of the length of the proofs, culminating in the construction of PCPs of quasi-linear length, by Ben-Sasson and Sudan (SICOMP 38(2):551–607, 2008) and Dinur (J ACM 54(3):241–250, 2007). One common theme in the aforementioned PCP constructions is that they all rely heavily on sophisticated algebraic machinery. The aforementioned work of Dinur (2007) suggested an alternative approach for constructing PCPs, which gives a simpler and arguably more intuitive proof of the PCP theorem using combinatorial techniques. However, this combinatorial construction only yields PCPs of polynomial length and is therefore inferior to the algebraic constructions in this respect. This gives rise to the natural question of whether the proof length of the algebraic constructions can be matched using the combinatorial approach. In this work, we provide a combinatorial construction of PCPs of length \({n\cdot\left(\log n\right)^{O(\log\log n)}}\), coming very close to the state-of-the-art algebraic constructions (whose proof length is \({n\cdot\left(\log n\right)^{O(1)}}\)). To this end, we develop a few generic PCP techniques which may be of independent interest. It should be mentioned that our construction does use low-degree polynomials at one point. However, our use of polynomials is confined to the construction of error-correcting codes with a certain simple multiplication property, and it is conceivable that such codes could be constructed without the use of polynomials. In addition, we provide a variant of the main construction that does not use polynomials at all and has proof length \({n^{4} \cdot\left(\log n\right)^{O(\log\log n)}}\). This is already an improvement over the aforementioned combinatorial construction of Dinur.  相似文献   

18.
This paper confirms that, as originally reported in Seneta (Journal of Applied Probability 41:177–187, 2004, p. 183), it is impossible to replicate Madan et al. (European Finance Review 2:135–156, 1998) results using log daily returns on S&P 500 Index from January 1992 to September 1994. This failure leads to a close investigation of the computational problems associated with finding maximum likelihood estimates of the parameters of the popular VG model. Both standard econometric software, such as R, low level programming languages, such as Matlab\(^{\textregistered }\), and non-standard optimization software, such as Ezgrad described in Tucci (Journal of Economic Dynamics and Control 26:1739–1764, 2002), are used. The complexity of the log-likelihood function is studied. It is shown that it looks very complicated, with many local optima, and may be incredibly sensitive to very small changes in the sample used. Adding or removing a single observation may cause huge changes both in the maximum of the log-likelihood function and in the estimated parameter values. An intuitive procedure which works nicely both when implemented in R and in Matlab\(^{\textregistered }\) is presented.  相似文献   

19.
We investigate the distinguishability of orthogonal generalized Bell states (GBSs) in \(d\otimes d\) system by local operations and classical communication (LOCC), where d is a prime. We show that |S| is no more than \(d+1\) for any l GBSs, i.e., \(|S|\le d+1\), where S is maximal set which is composed of pairwise noncommuting pairs in \({\varDelta } U\). If \(|S|\le d\), then the l GBSs can be distinguished by LOCC according to our main Theorem. Compared with the results (Fan in Phys Rev Lett 92:177905, 2004; Tian et al. in Phys Rev A 92:042320, 2015), our result is more general. It can determine local distinguishability of \(l (> k)\) GBSs, where k is the number of GBSs in Fan’s and Tian’s results. Only for \(|S|=d+1\), we do not find the answer. We conjecture that any l GBSs cannot be distinguished by one-way LOCC if \(|S|=d+1\). If this conjecture is right, the problem about distinguishability of GBSs with one-way LOCC is completely solved in \(d\otimes d\).  相似文献   

20.
We present a PDE-based approach for finding optimal paths for the Reeds–Shepp car. In our model we minimize a (data-driven) functional involving both curvature and length penalization, with several generalizations. Our approach encompasses the two- and three-dimensional variants of this model, state-dependent costs, and moreover, the possibility of removing the reverse gear of the vehicle. We prove both global and local controllability results of the models. Via eikonal equations on the manifold \(\mathbb {R}^d \times {\mathbb {S}}^{d-1}\) we compute distance maps w.r.t. highly anisotropic Finsler metrics, which approximate the singular (quasi)-distances underlying the model. This is achieved using a fast-marching (FM) method, building on Mirebeau (Numer Math 126(3):515–557, 2013; SIAM J Numer Anal 52(4):1573–1599, 2014). The FM method is based on specific discretization stencils which are adapted to the preferred directions of the Finsler metric and obey a generalized acuteness property. The shortest paths can be found with a gradient descent method on the distance map, which we formalize in a theorem. We justify the use of our approximating metrics by proving convergence results. Our curve optimization model in \(\mathbb {R}^{d} \times \mathbb {S}^{d-1}\) with data-driven cost allows to extract complex tubular structures from medical images, e.g., crossings, and incomplete data due to occlusions or low contrast. Our work extends the results of Sanguinetti et al. (Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications LNCS 9423, 2015) on numerical sub-Riemannian eikonal equations and the Reeds–Shepp car to 3D, with comparisons to exact solutions by Duits et al. (J Dyn Control Syst 22(4):771–805, 2016). Numerical experiments show the high potential of our method in two applications: vessel tracking in retinal images for the case \(d=2\) and brain connectivity measures from diffusion-weighted MRI data for the case \(d=3\), extending the work of Bekkers et al. (SIAM J Imaging Sci 8(4):2740–2770, 2015). We demonstrate how the new model without reverse gear better handles bifurcations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号