首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用非平衡磁控溅射技术在单晶硅基底上沉积了类石墨非晶碳膜。利用X射线光电子光谱、Ram an光谱、高分辨透射电子显微镜及原子力显微镜对沉积薄膜的微观结构进行了详细表征;利用纳米压痕仪和球盘摩擦试验机分别对其力学性能和摩擦学性能进行了测试。结果表明,当前制备的非晶碳膜中sp2杂化碳占主导呈现出类石墨特征,但薄膜硬度可达14.2 GPa。大气环境中的摩擦性能测试表明,所制备的类石墨非晶薄膜具有优异的摩擦学性能:其承载能力高达2.8 GPa,同时具有较低摩擦因数(~0.05)和磨损率(~10-11cm3/Nm)。类石墨碳膜优异的摩擦学性能主要归因于其独特的结构、较低的内应力及良好的热稳定性。  相似文献   

2.
针对航空发动机主轴轴承服役工况恶劣和类石墨碳基薄膜在高温环境下的性能研究不足等问题,采用磁控溅射技术在不同轴承钢基体(M50 钢、M50NiL 钢和 W9Cr4V2Mo 钢)上沉积 Ti-GLC 薄膜,探究在不同温度下的摩擦学性能。采用 SEM、 Raman 分析薄膜的微观结构,采用纳米压痕仪、划痕仪等测试其力学性能,利用 MFT-5000 型多功能摩擦磨损试验机测试所镀薄膜在不同温度下(室温、200 ℃、250 ℃和 300 ℃)的摩擦学性能。结果表明:在三种不同轴承钢基体沉积的 Ti-GLC 薄膜,其硬度和弹性模量变化不大,结合力从大到小依次为 M50>M50NiL>W9Cr4V2Mo。随着温度的升高,三种钢基体沉积 Ti-GLC 薄膜的摩擦因数均逐渐增大,而磨损率则先减小后增大,且表现出不同的磨损形式。三种轴承钢基体沉积 Ti-GLC 薄膜的最佳工作温度区间为室温~200 ℃,M50 钢基体所镀薄膜具有更好的力学性能和摩擦学性能,其结合力达到 80 N 以上, 300 ℃时的平均摩擦因数为 0.125,磨损率仅为 3.05×10?17 m3 /(N·m)。研究成果为类石墨碳基薄膜在高温环境下的实际应用奠定了理论基础。  相似文献   

3.
利用非平衡磁控溅射系统制备了含微量Cr的类石墨镀层,使用四点探针法测量所制备镀层的电阻率,测试结果表明所制备镀层工作层为类石墨层。使用SEM观察了镀层形貌,使用TEM及HRTEM观察了镀层的微观组织并利用选区电子衍射分析了镀层相结构,观察和分析结果表明:镀层表面质量良好,镀层的纯Cr金属底层为柱状晶结构,过渡层的晶体结构为非晶相中嵌有Cr纳米晶结构;工作层为非晶结构。测定了镀层的硬度、结合力,以及在不同载荷下的摩擦因数和比磨损率,测试结果表明:所制备镀层具有高硬度、高结合力、低摩擦因数和低比磨损率,且高载下比低载下有更低的摩擦因数。分析和讨论的结果还表明:工作层的非晶结构,是使所研究镀层具有高硬度、高结合力、低摩擦因数、低磨损率低的主要原因。  相似文献   

4.
在机械系统运行中存在的摩擦磨损问题直接影响系统的工作效率、运行可靠性和使用寿命。如何降低摩擦磨损对机械系统运行的影响至关重要。通过特殊的表面处理工艺在关键工件表面沉积耐磨损、自润滑的薄膜在众多的减摩降损方法中效果突出。相较于传统薄膜,高熵合金薄膜具有独特的微观结构和优异的力学性能,在摩擦领域表现出极佳的发展潜力。概述了近年来有关高熵合金薄膜的研究进展。首先介绍了高熵合金薄膜的基本概念和制备方法,论述了这些制备方法的原理、优缺点和适用领域。其中,通过磁控溅射法制备的高熵合金薄膜的表面光滑致密、成分均匀性好、膜基结合强度较高、组织结构可控,该方法已成为高熵合金薄膜最常用的制备方法。重点论述了采用磁控溅射法来调节元素组分、工艺参数、界面结构对高熵合金薄膜的微观结构和摩擦性能的影响,并从耐磨损性和减摩自润滑性等方面分析改善高熵合金薄膜摩擦学性能的关键因素。高熵合金薄膜具有硬质的组织结构、表面光滑致密、膜基结合牢固等特点,这是提升耐磨损性能的关键。通过复合自润滑相或氧化磨损诱导生成致密的润滑膜,可显著改善其减摩性能。总结了目前研究中存在的问题和不足,并就未来高熵合金薄膜在摩擦领域的研究方向进行了展望。  相似文献   

5.
类金刚石薄膜的摩擦性能及其应用   总被引:2,自引:4,他引:2  
首先从成键结构的角度分析了DLC薄膜摩擦性能的由来,然后分别从DLC薄膜的沉积工艺(包括制备方法、气源种类和掺杂元素)、摩擦环境条件和基底材料选择等三方面入手,讨论了影响DLC薄膜摩擦性能的主要因素及其影响规律。经过总结发现,通过调节DLC薄膜的沉积工艺可以改变DLC薄膜中sp~2杂化碳的含量以及氢的含量,进而影响DLC薄膜的摩擦性能;真空、惰性气体和低湿环境有利于获得更好的摩擦效果;过渡层和偏压有利于提高DLC薄膜与基底之间的附着力,其摩擦性能也会得到提升。最后对DLC薄膜在机械加工及耐磨器件、光学和电子保护以及生物医学领域的应用进行了综述,并对应用过程中存在的两大问题——DLC薄膜的内应力和热稳定性进行了分析,归纳了一些具体的解决方案,并对DLC薄膜的发展趋势进行了展望。  相似文献   

6.
尚魁平  冶艳  葛培林  江利  鲍明东 《表面技术》2011,40(4):34-37,54
在单晶Si (100)基体上,采用闭合场非平衡磁控溅射方法沉积制备了导电非晶碳膜.X射线衍射(XRD)分析表明薄膜呈明显的非晶结构;用XPS分析了薄膜中的碳键结构,碳膜的C1s峰位于284~285 eV之间,Cls峰分峰拟舍得出sp2C的原子数分数为59%左右,碳键以sp2结构为主;四探针法测得薄膜的电阻率为1.32×...  相似文献   

7.
目的 提升9Cr18不锈钢表面的耐磨损性能.方法 在不同氩气流量条件下,采用激光引弧磁过滤阴极电弧离子镀制备非晶碳膜.利用拉曼光谱、X射线光电子能谱仪(XPS)和原子力显微镜(AFM)表征薄膜的微观结构和化学态.利用薄膜综合性能测试仪和大气球-盘摩擦试验机,测试薄膜的力学性能和摩擦学性能.结果 拉曼光谱分析表明,随着氩气流量从0 mL/min增大到80 mL/min,ID/IG值从0.62逐渐增大到2.84,而G峰的半高宽随着氩气流量的增大而降低.XPS分析表明,随着氩气流量的增加,薄膜中sp3杂化键含量逐渐降低,氩气流量为0 mL/min时,sp3杂化键的原子数分数为55.1%,氩气流量为80 mL/min时,sp3杂化键的原子数分数降低至31.0%.氩气流量为0 mL/min时,制备的薄膜硬度和弹性模量最大,分别为46.4 GPa和380.5 GPa.不同氩气流量制备的薄膜,其摩擦系数为0.1~0.2,薄膜的磨损率随着氩气流量的增加而增大.结论 氩气流量对非晶碳膜的耐磨性能具有显著的影响,氩气流量为0 mL/min时,所制备的薄膜的磨损率为3.8×10–17 m3/(m·N),相较氩气流量为80 mL/min时所制备薄膜的磨损率(1.1×10–16 m3/(m·N))降低了1个数量级,说明其具有优异的耐磨损性能.  相似文献   

8.
采用磁控溅射法,在304不锈钢上制备Cr/WC/DLC多层梯度过渡类金刚石薄膜,利用场发射扫描电子显微镜(SEM)、拉曼光谱仪(Raman)、纳米压痕仪、划痕测试仪等分析薄膜的微观结构和力学性能,利用UMT-3多功能摩擦磨损试验机考察其在大气、去离子水、发动机油3种环境下的摩擦学性能。结果表明:该薄膜的多层梯度设计使其膜基间结合力得到了有效改善,且硬度高达32.6GPa,在3种环境下均具有优异的摩擦学性能。在大气环境下,薄膜具有较低的平均摩擦因数,为0.094;但具有3种环境下最大的磨损率,为7.86×10-8 mm3(N·m)-1;在去离子水环境下,薄膜的平均摩擦因数较高,为0.124;而其磨损率较低,为5.26×10-8 mm3(N·m)-1;在发动机油环境下,固-油复合润滑效应使薄膜具有更加优异的摩擦学性能,其平均摩擦因数和磨损率均为3种环境下的最小值,分别为0.065和4.44×10-8 mm3(N·m)-1。  相似文献   

9.
目的研究类富勒烯结构含氢碳膜的摩擦学性能及润滑机理。方法采用闭合场非平衡反应磁控溅射技术,通过调节靶电流制备出类富勒烯结构含氢碳膜(FL-C:H)与非晶含氢碳膜(a-C:H)。通过扫描电子显微镜、原子力显微镜观察薄膜表面与断面的形貌,通过傅里叶红外光谱仪表征了碳膜的碳氢键结构,通过纳米压痕仪、划痕仪、摩擦磨损实验评价薄膜的力学及摩擦学性能,通过透射电子显微镜分析磨屑结构,并通过光学显微镜及三维轮廓仪对磨斑及磨痕形貌进行分析。结果类富勒烯结构对薄膜的机械力学性能影响不大,但是对其大载荷下的摩擦学性能有影响。与a-C:H碳膜相比,小载荷下(5 N),FL-C:H碳膜的摩擦系数较高,大载荷下(20 N),FL-C:H碳膜具有较低的摩擦系数(0.03)和磨损率(4.8×10-8 mm~3/(m·N)),并且其摩擦界面形成了类球状纳米结构颗粒。随着载荷的增加,FL-C:H碳膜的摩擦系数和磨损率先降低,后基本不变,在载荷大于15 N时,摩擦界面形成了类球状纳米结构颗粒。结论类球状纳米结构颗粒的形成能降低薄膜的摩擦系数和磨损率,而FL-C:H碳膜比a-C:H碳膜更易在摩擦界面形成类球状纳米结构颗粒。这种类球状纳米结构的形成还依赖于载荷的大小(大载荷时更易形成),因此类富勒烯碳膜在大载荷下更易保持低的摩擦系数及磨损率。  相似文献   

10.
目的提高高速钢的干摩擦学性能,探究不同Ti含量掺杂对类石墨碳膜摩擦性能的影响。方法用非平衡磁控溅射离子镀技术制备了不同Ti含量的类石墨碳膜,用光学显微镜、扫描电子显微镜、Raman光谱、洛氏硬度计、纳米压痕仪等分析薄膜的微观结构和力学性能,用高速线性往复磨损试验机检测薄膜的干摩擦学性能,并用光学显微镜观察磨痕。结果制备的碳膜表面颗粒尺寸较小,断面致密,且逐渐趋向柱状结构。随着Ti靶溅射电流的增大,逐渐增加的Ti元素打断了sp~3键生长,薄膜中生成更稳定的sp~2键,且sp~2键含量先增大后减小,在0.8 A达到最大,溅射电流为1.1 A时,Ti元素含量最大,sp~2键和sp~3键都减少。碳膜与基体结合力随着Ti靶电流变大而先增大后减小,在0.8 A结合最佳,约为HF3级。硬度和弹性模量先减小后增加,0.8 A时达到最小。碳膜摩擦系数相比于原样都较低,在0.09~0.12之间。磨损率先增大后减小,维持在(5~15)×10~(-16) m~3/(N·m)左右。结论不同Ti含量的类石墨碳膜,能明显降低高速钢与钢球对磨的粘着磨损倾向,降低摩擦系数和磨损率。  相似文献   

11.
采用等离子体增强化学气相沉积与原位渗氮复合技术在硅片和轴承钢球上制备了类石墨碳薄膜,将两者组成摩擦配伍对,并讨论自配对类石墨薄膜在氮气中摩擦学行为。利用往复摩擦机、扫描电子显微镜、三维表面轮廓仪考察自配对类石墨碳薄膜在不同载荷下摩擦磨损性能;采用高分辨透射电镜、拉曼光谱和红外吸收谱分析类石墨碳薄膜摩擦前后结构变化。摩擦测试结果表明:在载荷4 N时,薄膜摩擦因数为0.01;在8 N时,薄膜摩擦因数降低到0.005。这种变化归因于摩擦诱导薄膜结构进一步有序化以及沿滑动方向形成更加有序且更长石墨烯以及片状磨屑。证实了采用自配对碳薄膜方案是实现固体超滑一种有效途径。  相似文献   

12.
采用射频磁控溅射方法在聚碳酸酯片(PC)上沉积了类金刚石薄膜。利用激光拉曼光谱和扫描电子显微镜对薄膜的形貌及结构进行分析;采用表面粗糙度仪和球—盘式摩擦磨损试验机对薄膜的摩擦学性能进行测试。结果表明:利用射频磁控溅射方法在聚碳酸酯片上沉积的薄膜具有类金刚石特征;射频功率和直流偏压对sp3键含量有较大影响,并影响镀膜后聚碳酸酯材料的表面粗糙度。  相似文献   

13.
考察了SiC薄膜对块体纳米结构钛力学和摩擦性能的影响。实验采用磁控溅射技术制备SiC薄膜(样品台不加温),使用划痕仪测量界面结合力,采用拉伸试验机测量拉伸性能,采用摩擦试验机测量摩擦性能(对摩件为Si3N4,干摩擦),采用SEM-EDAX观察分析微观组织。研究了薄膜(或涂层)对块体纳米材料力学性能的影响,并且获得了一种兼具高强度、良好塑性和良好摩擦学性能的纯钛金属材料。研究结果表明,SiC薄膜不仅不会降低纳米结构Ti的拉伸性能,而且能显著降低摩擦系数(从0.7到0.3),大大提升抗磨性能。  相似文献   

14.
采用直流磁控溅射石墨靶、中频磁控溅射碳化硅靶以及离子源辅助的复合沉积技术,制备出膜层质量优异、摩擦因数和磨损率较低的具有不同Si含量的无氢掺硅类金刚石薄膜。使用XPS、拉曼光谱仪、台阶仪、纳米硬度计、SEM、EDS以及球盘式摩擦磨损试验仪测试并表征薄膜的微观结构、力学性能和摩擦学性能。研究表明,该技术能够成功制备出无氢掺硅类金刚石薄膜;随着SiC靶功率密度的增加,薄膜中Si的含量和sp3键的含量逐渐增加,其纳米硬度和弹性模量先增大后减小,摩擦因数由0.277降低至0.066,但其磨损率从6.29×10-11 mm3/Nm增加至1.45×10-9 mm3/Nm;当SiC靶功率密度为1.37W/cm2时,薄膜的纳米硬度与弹性模量分别达到最大值16.82GPa和250.2GPa。  相似文献   

15.
目的通过调节偏压,改善无氢DLC薄膜的微观结构,提高其力学性能和减摩抗磨性能。方法采用离子束辅助增强磁控溅射系统,沉积不同偏压工艺的DLC薄膜。采用原子力显微镜(AFM)观察薄膜表面形貌,采用拉曼光谱仪对薄膜的微观结构进行分析,采用纳米压痕仪测试薄膜硬度及弹性模量,采用表面轮廓仪测定薄膜沉积前/后基体曲率变化,并计算薄膜的残余应力,采用大载荷划痕仪分析薄膜与不锈钢基体的结合力,采用TRB球-盘摩擦磨损试验机评价薄膜的摩擦学性能,采用白光共聚焦显微镜测量薄膜磨痕轮廓,并计算薄膜的磨损率。结果偏压对DLC薄膜表面形貌、微观结构、力学性能、摩擦学性能都有不同程度的影响。偏压升高导致碳离子能量升高,表面粗糙度呈现先减小后增加的趋势,-400V的薄膜表面具有最小的表面粗糙度且C─C sp^3键含量最多,这也导致了此偏压下薄膜的硬度最大。薄膜的结合性能与碳离子能量大小呈正相关,-800 V时具有3.98 N的最优结合性能。不同偏压工艺制备的薄膜摩擦系数随湿度的增加,均呈现减小的趋势,偏压为-400V时,薄膜在不同湿度环境中均显示出最优的摩擦学性能。结论偏压为-400 V时,DLC薄膜综合性能最优,其表面粗糙度、硬度、结合力和摩擦系数分别为2.5 nm、17.1 GPa、2.81 N和0.11。  相似文献   

16.
目的 研究反应溅射石墨制备非晶碳过程中乙炔流量变化对非晶碳微观结构、力学性能及摩擦学性能的影响规律。方法 通过在乙炔气氛中反应溅射石墨靶,调控乙炔流量,制备不同结构的非晶碳膜层,采用X射线光电子能谱仪、激光共聚焦拉曼光谱仪分析膜层的微观结构,采用纳米压痕仪表征膜层的力学性能,采用球盘式摩擦磨损试验机、白光干涉仪和光学显微镜表征膜层摩擦学性能。结果 通过反应溅射法制备了致密均匀的非晶碳,分析发现,所有薄膜表层均含有一定量O元素(原子数分数为6.36%~13.86%)。经Ar+刻蚀后,大部分膜层的O含量可降至1%以下;随着乙炔流量的增加,膜层的硬度(H)、弹性模量(E)和H3/E2均呈先增后减的趋势,在乙炔流量为10 cm3/min时膜层的硬度和弹性模量达到最大值,分别为27.93、233.55 GPa;摩擦学性能测试结果显示,膜层的平均摩擦因数在0.09~0.11之间,在启动阶段摩擦因数随着氢元素(H)含量的增加呈下降趋势,5 cm3/min试样的膜层的耐磨性最高、磨损量最小,其磨损量为0.72× 10−16 m3/(N.m)。结论 通过调节反应溅射石墨过程中乙炔的流量,可调控非晶碳中sp3/sp2、H含量,进而达到调控非晶碳力学性能、摩擦学性能的目的。  相似文献   

17.
CrN和CrAlN薄膜的微观结构及在不同介质中的摩擦学性能   总被引:1,自引:1,他引:1  
采用中频非平衡反应磁控溅射技术在单晶硅P(111)和不锈钢(1Cr18Mn8Ni5N)基材上制备了CrN和CrAlN薄膜.利用X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、原子力显微镜(AFM)、场发射扫描电子显微镜(FESEM)和纳米压痕仪对薄膜的相结构、化学组成、表面形貌、断面结构和力学性能进行了测试分析.利用球-盘式摩擦磨损试验机(CSM)考察了两种薄膜在不同介质(空气、自来水、oil-1 (TAO-40)及oil-2 (150BS))中和Al2O3球对磨的摩擦学性能.结果表明:CrN薄膜中Al元素的掺杂并未改变薄膜晶体结构,但却降低了薄膜的表面粗糙度、增强了薄膜的致密性、提高了薄膜的力学性能、改善了水润滑和油润滑条件下薄膜的摩擦学性能.由于CrN和CrAlN薄膜的摩擦磨损性能显著依赖于测试介质,因此重点讨论了它们在不同介质中的摩擦磨损机理.  相似文献   

18.
针对非晶碳基薄膜高内应力和低膜基结合强度的问题,采用闭合场非平衡磁控溅射系统在316L不锈钢基体上制备多层结构掺杂类石墨薄膜(GLC),探究载荷、摩擦副和介质环境对薄膜摩擦学行为的影响。结果表明,制备得到的多层结构GLC薄膜结构致密均匀,膜基之间没有明显缺陷,且力学性能良好。薄膜在干摩擦条件下的摩擦因数曲线呈明显的三阶段特征,分别对应于轻微的磨粒磨损、薄膜的剥离以及对磨球上碳质转移膜的形成。薄膜的平均摩擦因数随载荷的增加而显著提高,磨损率呈先减小后增大的趋势。相对于ZrO_(2)陶瓷球,Si_(3)N_(4)陶瓷球因其较高的黏着倾向和较大的赫兹接触半径导致其较高的摩擦因数和磨损率。GCr15金属球因其较低的硬度,导致碳质转移膜随金属磨削的剥离而脱落,造成相对较高的摩擦因数和磨损率。相对于室温空气环境下,GLC薄膜在NaCl溶液中由于受到水溶液的冲洗和腐蚀介质Cl^(-)的侵蚀,导致薄膜从基体的快速剥离,造成更高的摩擦因数和磨损率。研究成果可为提高非晶碳基薄膜在不同工作环境下的服役寿命和使用效率提供理论指导。  相似文献   

19.
采用直流反应溅射在304不锈钢表面沉积CrN薄膜。利用X射线衍射仪(XRD),扫描电子显微镜(SEM),原子力显微镜(AFM),显微硬度计,磨损试验机与三维轮廓仪等表征氮气流量对CrN薄膜组织结构与摩擦性能的影响。研究结果表明,随着氮气流量的增加,CrN (200)晶面呈择优取向,薄膜的沉积速率随着氮气流量的增加逐渐降低。另外,薄膜的表面粗糙度随着氮气流量的增加呈先降低后增加的趋势。随着氮气流量从15 sccm增加至30 sccm时,薄膜的显微硬度先从527.34 HV增加至1042.26 HV,当氮气流量再增加至35 sccm时,薄膜的显微硬度却降低至918 HV。磨损试验表明,当氮气流量为30 sccm 时薄膜具有最小的摩擦系数0.93和磨损率2.02×10-15m3·(N·m)-1,显示最佳的磨损性能。  相似文献   

20.
目的探究Ti含量对MoS2-Ti复合薄膜高温摩擦学性能的影响,制备高温摩擦性能良好的MoS2-Ti复合薄膜。方法采用射频和直流双靶共溅射技术沉积了不同Ti含量的MoS2-Ti复合薄膜,研究了Ti含量对MoS2-Ti薄膜微观结构和力学性能的影响,进一步探究了MoS2-Ti复合薄膜在大气环境下的高温摩擦学性能。采用能谱仪(EDS)、X射线衍射仪(XRD)和扫描电子显微镜(SEM),对薄膜的成分、晶相结构及微观形貌进行分析。利用显微维氏硬度计测试薄膜的力学性能,通过UMT-TriboLab摩擦磨损试验机评价薄膜的摩擦磨损性能。此外,采用SEM、拉曼光谱仪(Raman)和X射线光电子能谱仪(XPS),对薄膜的磨痕形貌及对偶球转移膜的成分进行分析。结果Ti掺杂促进了MoS2薄膜以(002)晶面择优取向生长,且提高了薄膜的致密度,薄膜硬度从70HV提升到350HV。MoS2-Ti复合薄膜在高温环境下的摩擦性能,随Ti含量的增加呈先上升后下降的趋势,其中Ti原子数分数为6.81%的MoS2-Ti复合薄膜具有较低的摩擦因数和磨损率。通过对转移膜的成分进行分析,发现处于300℃高温环境下,Ti原子数分数为13.51%的MoS2-Ti复合薄膜由于在摩擦过程中生成的氧化物较多,其耐磨性能开始下降。结论Ti含量对MoS2-Ti复合薄膜的高温摩擦学性能有明显的影响,掺杂适量Ti能显著提高MoS2薄膜在大气环境下的高温摩擦学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号