首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By taking an anaerobic Dehalococcoides-containing consortium (designated UC-1) as the research object, the influence of humic acid on the degradation of TCE by UC-1 was examined. The results indicated that (i) TCE was more rapidly degraded in the presence of humic acid compared with the control and the TCE removal efficiencies increased with the increase of concentrations of humic acid; and (ii) at the end of experiments, in the presence of humic acid, much more ethene was produced compared with the control, whereas less VC was accumulated in the medium. Presumably, humic acid improves the activity of organisms in dechlorinating populations resulting in more ethene accumulated in the medium, and (iii) the degradation of TCE stimulated by humic acid by UC-1 might be a biotic process or an abiotic process. Thus, humic acid could influence the degradation of TCE by UC-1 directly via enhancing electron transfer between UC-1 and TCE. This work is a preliminary step for accelerating the degradation of TCE in the groundwater environment using a kind of natural organic matter - humic acid.  相似文献   

2.
Soil column experiments were conducted to investigate the effect of ozonation duration, contaminant content, particle size, moisture content, OH radical scavenger and soil organic matter on the removal of anthracene by in situ ozonation. In the whole study, the gas flow rate was 100 mL/min and concentration of gaseous ozone was 40 mg/L. The removal efficiency increased with the elapsed time, but the removal rate decreased in the range of 0–90 min. As anthracene content in sand decreased from 50 to 10 mg/kg, the removal efficiency increased from 42.1% to 62.0%, and ozone passed through soil column more rapidly. However, the ozone effectiveness reduced when anthracene content dropped. Small particle size provides a large interfacial area, which led to the high removal efficiency and long ozone breakthrough time in the column. The profile of residual anthracene in soil column varied more greatly at smaller particle size. The removal efficiency reduced when the moisture content rose from 0% to 9.1%. The ozone breakthrough time also decreased with the increasing moisture content. The presence of sodium bicarbonate or humic acid reduced the removal efficiency to some extent. GC–MS was employed in this study to determine 9,10-anthraquinone as the main ozonation product.  相似文献   

3.
This study investigated the oxidation of methyl methacrylate (MMA) by sole ozonation and ozone/UV treatments. The semi-batch ozonation experiments were proceeded under different reaction conditions to study the effects of ozone dosage and UV radiation on the oxidation of MMA. The experimental results indicated that both the oxidation of MMA by the sole ozonation and O3/UV processes can completely decompose MMA to form the following intermediates within 30 min reaction time. To increase the applied ozone dosage can significantly raise the removal efficiency of MMA. However, the mineralization of MMA via the direct oxidation reaction of molecular ozone was slow, while introducing the UV radiation can promote the mineralization rate of MMA. In addition, the pH value of the oxidized solution in the O3/UV treatment decreased lower than that in the sole ozonation treatment of about 1 unit. The possible scheme of the decomposition pathway of MMA under the ozonation process is proposed in this study. Formic acid and acetic acid were found to be the main ozonated intermediates.  相似文献   

4.
In this work a new technique dealing with differential neural network observer (DNNO), which is related with differential neural networks (DNN) approach, is applied to estimate the anthracene dynamics decomposition and to identify the kinetic parameters in a contaminated model soil treatment by simple ozonation. To obtain the experimental data set, the model soil (sand) is combined with an initial anthracene concentration of 3.24mg/g and treated by ozone (with the ozone initial concentration 16mg/L) during 90min in a reactor by the "fluid bed" principle. The anthracene degradation degree was controlled by UV-vis spectrophotometry and HPLC techniques. Based on the HPLC data, the obtained results confirm that anthracene may be decomposed completely in the solid phase by simple ozonation during 20min and by-products of ozonation are started to be destroyed after 30min of treatment. In the ozonation process the ozone concentration in the gas phase at the reactor outlet is registered by an ozone detector. The variation of this parameter is used to obtain the summary characteristic curve of the anthracene ozonation (ozonogram). Then, using the experimental decomposition dynamics of anthracene and the ozonogram, the proposed DNNO is trained to reconstruct the anthracene decomposition and to estimate the anthracene ozonation constant using the DNN technique and a modified Least Square method.  相似文献   

5.
In this study, the degradation rate constants of humic substances by ozonation under the different empirical conditions such as ozone-air flow rate, ozone generation potential, pH, temperature, powdered activated carbon (PAC) dosage and HCO(3)(-) ions concentration were determined. The ozonation of humic substances in the semi-batch reactor was found to fit pseudo-first-order reaction. The values of apparent rate constant of humic substances degradation increased with the increase of initial ozone-air flow rates, ozone generation potential, pH, temperatures and PAC dosage, but decreased with the increase of HCO(3)(-) concentration of the solution. Using Arrhenius equation, the activation energy (E(a)) of the reaction was found as 1.96 kJ mol(-1). The reaction of ozonation of humic substances under the different temperatures was defined as diffusion control according to E(a). The model based on artificial neural network (ANN) could predict the concentrations of humic substances removal from aqueous solution during ozonation. A relationship between the predicted results of the designed ANN model and experimental data was also conducted. The ANN model yielded determination coefficient of (R(2)=0.995), standard deviation ratio (0.065), mean absolute error (4.057) and root mean square error (5.4967).  相似文献   

6.
This study investigates the enhanced ozonation of dimethyl phthalate (DMP), which is a pollutant of concern in water environments, with high silica zeolites and ultraviolet (UV) radiation. Semibatch ozonation experiments are performed under various reaction conditions to examine the effects of inlet gas ozone concentration, high silica zeolite dosage, and UV radiation intensity on the decomposition of DMP. The complete removal of DMP can be efficiently achieved via both O(3) and O(3)/UV treatments. Note that the presence of high silica zeolites accelerates the decomposition rate of DMP in the O(3) process. On the other hand, the removal efficiencies of both chemical oxygen demand (COD) and total organic carbons (TOC) are significantly enhanced by employing the ozonation combined with UV radiation. The O(3)/UV process is also advantageous for the utilization efficiency of fed ozone especially in the late ozonation period. Furthermore, the correlation between the COD removal percentage (%) and the mole ratio of ozone consumed to the DMP treated (mol mol(-1)) is obtained. The clear-cut removal relationship of the TOC with COD during the ozonation of DMP has also been presented. Consequently, the results evaluate the flexibility of ozonation system associated with high silica zeolites and UV radiation for the removal of DMP and provide the useful information in engineering application.  相似文献   

7.
This study deals with evaluation of organic matter from Mexico City waste sanitary landfill leachate of Bordo Poniente (including domestic and industrial) by ozonation after a coagulation treatment with Fe2(SO4)(3) (2.5 g/L at pH 4-5). The content of humic substances after the coagulation treatment decreases up to 70%. Then leachate obtained from a solid with initial COD=1511 mg/L and the pH 8.5 was treated by ozone. The aqueous samples by a UV-vis and HPLC technique were analyzed. The partial identification of the initial composition of the organic matter as well as of intermediates and final products was carried out after the extraction of the initial and ozonated leachate with benzene, chloroform:methanol (2:1) and hexane. Then the extracts with a gas chromatograph with mass detector and FID were analyzed. In the HPLC results we identify malonic and oxalic acids. The initial concentrations of these acids were 19 mg/L and 214 mg/L, respectively. The oxalic acid is formatted and accumulated in ozonation. The obtained results show that the color disappears (visually) at 100% during 5 min of ozonation. The organic substances, extracted with chloroform-methanol, may be destructed during 15 min of ozonation; the organic matter, extracted with benzene, destructs completely by ozone during 5 min, and the organic compounds extracted with hexane have a low ozonation rate. The toxic compounds presented in leachate decompose completely during 15 min of ozonation. The ozonation rate constants for each group of organics (as observed constants) were calculated applying simplified mathematical model and the recurrent least square method using the program MATLAB 6.5.  相似文献   

8.
The aim of this research was to investigate catalytic activity of petroleum coke, activated carbon (AC) prepared from this material, Ni supported catalyst on activated carbon (Ni/AC) in the ozonation of aqueous phase p-chlorobenzoic acid (p-CBA). Activated carbon and Ni/AC catalyst were characterized by XRD and SEM. The presence of petroleum coke did not improve the degradation of p-CBA compared to ozonation alone, but it was advantageous for p-CBA mineralization (total organic carbon, TOC, reduction), indicating the generation of highly oxidant species (*OH) in the medium. The presence of either activated carbon or Ni/AC considerably improves TOC removal during p-CBA ozonation. Ni/AC catalyst shows the better catalytic activity and stability based on five repeated tests during p-CBA ozonation. During the ozonation (50 mg/h ozone flow rate) of a 10 mg/L p-CBA (pH 4.31), it can be more mineralized in the presence of Ni/AC catalyst (5.0 g/L), TOC removal rate is over 60% in 60 min, 43% using activated carbon as catalyst, only 30% with ozonation alone.  相似文献   

9.
The decomposition of p-hydroxybenzoic acid, an important pollutant present in the wastewaters of the olive oil industry, has been carried out by a direct photolysis provided by a polychromatic UV radiation source, and by ozone. In both processes, the conversions obtained as a function of the operating variables (temperature, pH and ozone partial pressure in the ozonation process) are reported. In order to evaluate the radiation flow rate absorbed by the solutions in the photochemical process, the Line Source Spherical Emission Model is used. The application of this model to the experimental results provides the determination of the reaction quantum yields which values ranged between 8.62 and 81.43 l/einstein. In the ozonation process, the film theory allows to establish that the absorption process takes place in the fast and pseudo-first-order regime and the reaction is overall second-order, first-order with respect to both reactants, ozone and p-hydroxybenzoic acid. The rate constants are evaluated and vary between 0.18x10(5) and 29.9x10(5) l/mol s depending on the temperature and pH.  相似文献   

10.
The decomposition of two haloacetic acids (HAAs), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), from water was studied by means of single oxidants: ozone, UV radiation; and by the advanced oxidation processes (AOPs) constituted by combinations of O(3)/UV radiation, H(2)O(2)/UV radiation, O(3)/H(2)O(2), O(3)/H(2)O(2)/UV radiation. The concentrations of HAAs were analyzed at specified time intervals to elucidate the decomposition of HAAs. Single O(3) or UV did not result in perceptible decomposition of HAAs within the applied reaction time. O(3)/UV showed to be more suitable for the decomposition of DCAA and TCAA in water among the six methods of oxidation. Decomposition of DCAA was easier than TCAA by AOPs. For O(3)/UV in the semi-continuous mode, the effective utilization rate of ozone for HAA decomposition decreased with ozone addition. The kinetics of HAAs decomposition by O(3)/UV and the influence of coexistent humic acids and HCO(3)(-) on the decomposition process were investigated. The decomposition of the HAAs by the O(3)/UV accorded with the pseudo-first-order mode under the constant initial dissolved O(3) concentration and fixed UV radiation. The pseudo-first-order rate constant for the decomposition of DCAA was more than four times that for TCAA. Humic acids can cause the H(2)O(2) accumulation and the decrease in rate constants of HAAs decomposition in the O(3)/UV process. The rate constants for the decomposition of DCAA and TCAA decreased by 41.1% and 23.8%, respectively, when humic acids were added at a concentration of 1.2mgTOC/L. The rate constants decreased by 43.5% and 25.9%, respectively, at an HCO(3)(-) concentration of 1.0mmol/L.  相似文献   

11.
This work focused on the degradation of toxic organic compounds such as trichloroethylene (TCE) in water, using a combined photocatalysis/microfiltration (MF) system. The performances of the hybrid system were investigated in terms of the removal efficiency of TCE and membrane permeability, in the presence or absence of background species, such as alkalinity and humic acids. The mass balancing of the fate of TCE during photocatalytic reactions was performed in order to evaluate the feasibility of the photocatalytic membrane reactor (PMR). Greater TCE degradation (>60%) was achieved with an increase in the TiO2 dosage (up to 1.5g/L) in PMR, but a substantially large TiO2 dosage brought about a decrease in TCE degradation efficiency. The photocatalytic decomposition of TCE appeared to be more effective in acidic pH conditions than with a neutral or alkaline pH. The addition of alkalinity and humic acid into the feedwater did not have a significant effect on TCE degradation, while humic acids (whose dose was 1mg/L as TOC) in the feedwater played a part in a decline of permeability by 60%. Membrane permeability in the PMR was also affected by tangential velocities. An improvement of 60% in flux was achieved when the tangential velocity increased from 0.19 to 1.45m/s. This is because flow regimes can govern the deposition of TiO2 particles on the membrane surface.  相似文献   

12.
This paper presents experimental results on the catalytic effect of volcanic sand on benzothiazole ozonation. Experiments were assessed at laboratory scale, in a differential circular flow reactor composed of a volcanic sand fixed bed column of 19 cm3 and a 1 dm3 storage tank, operated in batch mode at 20 degrees C and pH 2-7. Experimental results show that ozone self-decomposition is enhanced by the presence of volcanic sand at all pH. At pH>pH(PZC), the increase in aqueous ozone decay could be related to ozone interaction with strong Lewis acid on metal oxide surface sites of the volcanic sand. Ozone self-decomposition reactions occurring on the volcanic sand are less affected by the presence of radical scavengers. Benzothiazole removal by ozonation is also enhanced by the presence of volcanic sand. Moreover, the inhibitory effect of free radical scavengers is also impaired by volcanic sand, suggesting that strong Lewis acid surface sites play a key role on the reaction mechanism.  相似文献   

13.
Ozonation of acid yellow 17 dye in a semi-batch bubble column   总被引:1,自引:0,他引:1  
A semi-batch bubble column was used to evaluate the effect of ozonation on the removal of acid yellow 17 dye from water. Results indicate that ozonation is very effective at removing acid yellow 17 dye from synthetic textile wastewater. The ozone consumed to apparent dye removal ratio ranged from 2 to 15,000 mg ozone per mg of dye decolorized and was dependent on both ozonation time and apparent dye concentration. The biodegradability of the dye wastewater was evaluated by monitoring changes in 5-day biochemical oxygen demand (BOD5) with respect to chemical oxygen demand (COD). Results indicate that the wastewater biodegradability increased with an increase in ozonation time. Film theory was used to kinetically model the gas-liquid reactions occurring in the reactor. Modeling results indicated that during the first 10-15 min of ozonation, the system could be characterized by a fast, pseudo-first-order regime. With continued ozonation, system kinetics transitioned through a moderate then to a slow regime. Successful modeling of this period required use of a kinetic equation corresponding to a more inclusive condition. Model results are presented.  相似文献   

14.
800mL of 1.0mM phenol-containing aqueous solution was circulated at 20°C for 30 min in a suction-reactor, while 3.2 mg min(-1) ozone was introduced into the solution under the suction orifice. The removal rates of phenol vary polynomially with the orifice diameter as well as the suction pressure. The rate constant for the zero-order kinetics achieves the highest value at -0.070 MPa by using 5mm orifice. Although the suction-cavitation alone cannot remove phenol in 30 min, it can considerably enhance the ozonation of phenol. The rate constants for the zero-order kinetics by the simple ozonation and the combined method are 0.018 and 0.028 min(-1), respectively. Furthermore, no ozone was observed in the tail gas during the first 15 min for the ozonation in the suction reactor, and then the concentration of unreacted ozone slowly increased, indicating that the utilization rate of ozone is significantly improved by the suction-cavitation. The increasing input concentration of ozone obviously accelerates the ozonation of phenol, but the total required quantities of ozone are very close by various ozone input concentrations to reach the same degradation rate, indicating the ozonation assisted by the suction-cavitation can be considered as a quantitative reaction.  相似文献   

15.
p-Nitrotoluene (PNT) is a nitroaromatic compound that is hazardous to humans and is a suspected hormone disrupter. The degradation of PNT in aqueous solution by ozonation (O(3)) combined with sonolysis (US) was investigated in laboratory-scale experiments in which pH, initial concentration of PNT, O(3) dose and temperature were varied. The degradation of PNT followed pseudo-first-order kinetics, and degradation products were monitored during the process. The maximum degradation was observed at pH 10.0. As the initial concentration of PNT decreased, the degradation rate increased. Both temperature and ozone dose had a positive effect on the degradation of PNT. Of the total organic carbon (TOC) reduction, 8, 68, and 85% were observed with US, O(3), and a combination of US and O(3) after reaction for 90 min, respectively, proving that ozonation combined with sonolysis for removal of TOC is more efficient than ozonation alone or ultrasonic irradiation alone. Major by-products, including p-cresol, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, 4-(oxomethylene) cyclohexa-2,5-dien-1-one, but-2-enedioic acid, and acetic acid were detected by gas chromatography coupled with mass spectrometry.  相似文献   

16.
Hydrogen peroxide decomposition and trichloroethylene (TCE) oxidation kinetics were studied through batch slurry experiments, performed on two TCE contaminated soils (a sandy soil and a clay soil), characterized by different texture and organic fraction; besides, experiments were also performed on sandy soil columns, in order to more closely reproduce the typical conditions of an in situ treatment. The results of the batch tests indicated that hydrogen peroxide lifetime was correlated to the oxidation efficiency; namely, complete TCE oxidation was achieved only for the conditions characterized by longer hydrogen peroxide lifetime, that was obtained by addition of a proper stabilizer (KH(2)PO(4)). The soil properties were also observed to influence both hydrogen peroxide decomposition and TCE oxidation kinetics, probably as a consequence of the different TOC content. The soil column experiments, performed on 10, 20, and 30 cm long columns, indicated that hydrogen peroxide decomposition, which was almost complete at 30 cm depth, was on the contrary negligible when the stabilizer was added. In agreement with this observation, the performance of TCE oxidation were greatly improved in the latter case. Based upon the collected results, it can be concluded that hydrogen peroxide experiments may be useful, at least in the first screening phase of the design activity, for selecting, among the different operating conditions, those that may be potentially more effective for the oxidation treatment.  相似文献   

17.
This study aimed to identify degradation intermediates and to investigate the stoichiometry of decolorization and degradation, decolorization kinetics, and removal of antibacterial activity of malachite green (MG) using ozonization processes. The decolorization of MG was optimal at an acidic pH value of 3 based on molecular ozone attack on MG molecules. The stoichiometric ratio of decolorization between ozone and MG was calculated to be 7.0 with a regression coefficient of 0.995, whereas the ratio for degradation was calculated as 13.1 with a regression coefficient of 0.998. With MG concentrations in the range of 0.30-1.82 mM, the concentration of decolorized MG increased with higher initial concentrations of MG, whereas the ozonolytic decolorization rates of MG, decreased with increasing initial concentration. The pseudo-first-order degradation rate constants (k') decreased with the initial concentration and ranged from 0.769 to 0.223 min(-1). Twelve different intermediates were produced during the ozonation of MG with ozonation times between 5 min and 30 min and were identified by GC-MS. Although 86% of MG in the reaction mixture was removed by ozonation after 10 min, the decrease of antibacterial activity was very low (10%) for Bacillus subtilis and Staphylococcus epidermidis because the degradation intermediates, phenol and benzoic acid, also have antibacterial activity. The antibacterial activity of both MG and its intermediates were removed successfully with ozonation times above 26 min.  相似文献   

18.
This study characterizes the ozonation of the azo dye Cationic Red X-GRL in the presence of TBA (tert-butyl alcohol), a scavenger of hydroxyl radical, in a bubble column reactor. Effects of oxygen flow rate, temperature, initial dye concentration, and pH were investigated through a series of batch tests. Generally, enhancing oxygen flow rate enhanced the removal of dye. However, there was a minimum removal of dye at temperature 298 K. Increasing or decreasing temperature enhanced the degradation of dye. Increasing the initial dye concentration decreased the removal of dye while the ozonation rate increased. The rate constants and the kinetic regime of the reaction between ozone and dye were obtained by fitting the experimental data to a kinetics model based on a second order overall reaction, first order with respect to both ozone and dye. The Hatta numbers of the reactions were between 0.039 and 0.083, which indicated that the reaction occurred in the liquid bulk. The direct oxidation rate constant k(D) was correlated with temperature by a modified Arrhenius Equation with an activation energy E(a) of 15.538 kJ mol(-1).  相似文献   

19.
The removal efficiency of polycyclic aromatic hydrocarbons (PAHs) by ozonation using a rotating packed bed (RPB) in the surfactant-containing solution is studied. As an ozonation process starts, the ozone-containing gas is introduced and transferred into to the solution. The target PAHs in the solution would be then eliminated via both the gas stripping and ozonation decomposition. The RPB, which provides high gravitational force by adjusting the rotational speed, is employed as a novel ozone contactor. The naphthalene (NAP) and Brij 30 are chosen as the model pollutant and surfactant. Note that the experiments with different concentrations of NAP, Brij 30, and inlet gas ozone are performed for the further investigation. The residual NAP, effluent dissolved oxygen and ozone, and off-gas ozone concentrations are simultaneously monitored. As a result, the removal of NAP in the RPB is remarkably efficient compared with the convectional contactors because of its greater mass transfer coefficient. Moreover, the removal efficiency of NAP is found significantly dependent on the concentrations of NAP, Brij 30, and inlet gas ozone. It takes about several minutes to reach the steady state under the conditions of this study. In addition, it suggests employing RPBs as ozone contacting devices for the high removal efficiency of NAP. Consequently, the present study is useful for the practicable understanding of application of RPBs for the ozonation of PAHs in surfactant-containing solution.  相似文献   

20.
The present study is about the enhancement in ozone-mediated degradation and UV (254nm) photolysis of phenol in aqueous solutions by 300kHz acustic cavitation and the selection of operating parameters for optimum phenol removal efficiency. The method was based on monitoring of the concentration of phenol during 90min exposure to ozonation, sonication, UV photolysis, O(3)/ultrasound, UV/ultrasound and O(3)/UV/ultrasound operations. It was found that ozonation at alkaline pH was an effective method of phenol destruction, but it was considerably more effective when applied simultaneously with ultrasonic irradiation. The observed synergy particularly at alkaline pH was attributed to combined effects of: (i) increased ozone mass transfer (upon hydrodynamic shear forces created by ultrasonic bubbles) and (ii) excess hydroxyl radical formation (upon thermal decomposition of ozone in the gaseous cavity bubbles). Degradation of phenol by photolysis alone was negligible, while combination of UV-irradiation and ultrasound rendered considerable degrees of decay. The synergy here was explained by excess hydroxyl radicals that are formed by photolysis of ultrasound-generated H(2)O(2). Maximum rate of phenol degradation was observed in case of combined application of ozone, UV and ultrasound at basic pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号