首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characteristics of Ti6Al4V alloy subjected to thermal oxidation in air atmosphere at 650 °C for 48 h and its corrosion behavior in 0.1 and 4 M HCl and HNO3 medium are addressed. When compared to the naturally formed oxide layer (~4–6 nm), a relatively thicker oxide scale (~7 µm) is formed throughout the surface of Ti6Al4V alloy after thermal oxidation. XRD pattern disclose the formation of the rutile and oxygen‐diffused titanium as the predominant phases. A significant improvement in the hardness (from 324 ± 8 to 985 ± 40 HV0.25) is observed due to the formation of hard oxide layer on the surface followed by the presence of an oxygen diffusion zone beneath it. Electrochemical studies reveal that the thermally oxidized Ti6Al4V alloy offers a better corrosion resistance than its untreated counterpart in both HCl and HNO3 medium. The uniform surface coverage, compactness and thickness of the oxide layer provide an effective barrier towards corrosion of the Ti6Al4V alloy. The study concludes that thermal oxidation is an effective approach to engineer the surface of Ti6Al4V alloy to increase its corrosion resistance in HCl and HNO3 medium.  相似文献   

2.
Plasma nitrocarburized AISI 1020 steels were oxidized for 15, 30 and 60 min to evaluate their corrosion and microstructural properties. After plasma nitrocarburizing for 3 h at 570°C in a gas mixture comprising 85 vol.% N2, 12vol.% H2 and 3 vol.% CH4, the compound layer composed of ɛ-Fe2–3(N,C) and γ’-Fe4(N,C) phases and the diffusion layer above the matrix were observed. The top oxide layer, consisting mainly of magnetite (Fe2O4) and hematite (Fe2O3) phases, forms after post-oxidation treatment at 500°C. However, the oxide layer was severely degraded by spallation as a result of increases in post-oxidizing time. The difference in corrosion resistance should be attributed to the thickness of the top oxide layer, which was governed by post-oxidizing time.  相似文献   

3.
Plasma nitrocarburizing treatments of AISI 4140 low alloy steel have been carried out in a gas mixture of 85% N2-12% H2-3% CO2. All treatments were performed for 5 h at a chamber pressure of 4 mbar. Different treatment temperatures varying from 520 to 620 °C have been used to investigate the effect of treatment temperature on the corrosion and hardness properties and also microstructure of the plasma nitrocarburized steel. Scanning electron and optical microscopy, x-ray diffraction, microhardness measurement, and potentiodynamic polarization technique in 3.5% NaCl solution were used to study the treated surfaces. The results revealed that plasma nitrocarburizing at temperatures below 570 °C can readily produce a monophase ε compound layer. The compound layer formed at 620 °C is composed of two sub-layers and is supported by an austenite zone followed by the diffusion layer. The thickest diffusion layer was related to the sample treated at 620 °C. Microhardness results showed a reduction of surface hardness with increasing the treatment temperature from 520 to 620 °C. It has also been found that with increasing treatment temperature from 520 to 545 °C the corrosion resistance increases up to a maximum and then decreases with further increasing treatment temperature from 545 to 620 °C.  相似文献   

4.
Plasma nitrocarburizing and post-oxidation treatments were performed to improve the wear and corrosion resistance of S45C steel. Plasma nitrocarburizing was conducted for 3 h at 570°C in a nitrogen, hydrogen and methane atmosphere to produce the ε-Fe2−3(N,C) phase. It was found that the compound layer produced by plasma nitrocarburising was predominantly composed of the ∈-phase with traces of the γ′-Fe4(N,C) phase. The thickness of the compound layer was approximately 12 μm and the diffusion layer was approximately 300 μm in thickness. Plasma post oxidation was performed on nitrocarburized samples with various oxygen/hydrogen ratios at a constant temperature of 500°C for 1 h. The very thin magnetite (Fe3O4) layer 1 μm to 2 μm in thickness on top of the compound layer was obtained by plasma post oxidation. It was also confirmed that further improvement of the corrosion characteristics of the nitrocarburized compound layer was possible with an application of the superficial magnetite layer. Finally, throttle valve shafts of S45C steel were treated under optimum plasma processing conditions. Accelerated life time test results using a throttle body assembled with a shaft treated by plasma nitrocarburising and post oxidation showed that plasma nitrocarburizing and plasma post-oxidation processes could be a viable technology in the very near future in place of Cr6 plating.  相似文献   

5.
Nitrocarburizing of the type SAE 2205 duplex stainless steel was conducted at 450 °C, using a type of salt bath chemical surface treatment, and the microstructure and properties of the nitrided surface were systematically researched. Experimental results revealed that a modified layer transformed on the surface of samples with the thickness ranging from 3 to 28 μm changed with the treatment time. After 2205 duplex stainless steel was subjected to salt bath nitriding at 450 °C for time less than 8 h, the preexisting ferrite zone in the surface transformed into austenite by active nitrogen diffusion. The main phase of the nitrided layer was the expanded austenite. When the treatment time was extended to 16 h, the preexisting ferrite zone in the expanded austenite was decomposed and transformed partially into ε-nitride precipitate. When the treatment time extended to 40 h, the preexisting ferrite zone in the expanded austenite was transformed into ε-nitride and CrN precipitate. Further, a large amount of nitride precipitated from preexisting austenite zone. The nitrided layer depth thickness changed intensively with the increasing nitriding time. The growth of the nitride layer takes place mainly by nitrogen diffusion according to the expected parabolic rate law. The salt bath nitriding can effectively improve the surface hardness. The maximum values measured from the treated surface are observed to be approximately 1400 HV0.1 after 8 h, which is about 3.5 times as hard as the untreated material (396 HV0.1). Low-temperature nitriding can improve the erosion/corrosion resistance. After nitriding for 4 h, the sample has the best corrosion resistance.  相似文献   

6.
17-4PH martensitic precipitation hardening stainless steel was plasma nitrocarburized at 430 °C and 460 °C for 8 h. The nitrocarburized layers were characterized by optical microscope, scanning electron microscope, X-ray diffractometer, microhardness tests, pin-on-disc tribometer and the anodic polarization method in a 3.5% NaCl solution. The results show that the microstructure of plasma nitrocarburized layer is characterized by a compound layer with no evident diffusion zone. The phases in the 430 °C treated layer are mainly of γ′-Fe4N, nitrogen and carbon expanded martensite (α′N), and some incipient CrN phases. When the temperature increases up to 460 °C, there is no evidence of α′N phase. The processes of bulk precipitation hardening and surface treatment by plasma nitrocarburizing can be successfully combined in a single-step process on this steel. The hardness of modified layer can reach up to 1186HV, which is 3 times higher than that of untreated steel. The wear and corrosion resistance of the specimens can be apparently improved by plasma nitrocarburizing. The 460 °C/8 h treated specimen has the best wear and corrosion resistance in the present test conditions.  相似文献   

7.
This article addresses the characteristics of commercially pure titanium (CP-Ti) subjected to thermal oxidation in air at 650?°C for 48?h and its corrosion behavior in 0.1 and 4?M HCl and HNO3 mediums. Thermal oxidation of CP-Ti leads to the formation of thick oxide scales (~20???m) throughout its surface without any spallation. The oxide layer consists of rutile- and oxygen-diffused titanium as predominant phases with a hardness of 679?±?43?HV1.96. Electrochemical studies reveal that the thermally oxidized CP-Ti offers a better corrosion resistance than its untreated counterpart in both HCl and HNO3 mediums. The uniform surface coverage and compactness of the oxide layer provide an effective barrier toward corrosion of CP-Ti. The study concludes that thermal oxidation is an effective approach to engineer the surface of CP-Ti so as to increase its corrosion resistance in HCl and HNO3 mediums.  相似文献   

8.
Al + TiC laser cladding coatings were prepared on Ti-6Al-4V alloy by CO2 laser cladding technique. The microstructure, micro-hardness and phase constitutes of the laser cladding layer were investigated by means of scanning electron microscope (SEM), X-ray diffraction (XRD) and microsclermeter. The results indicated that the laser cladding layer solidified into the fine microstructure rapidly, and TiC hard phase was dispersived in the cladding layer. When the mass percent of TiC was 40%, the micro-hardness (1100HV0.2-1250HV0.2) of Al + TiC cladding layer was 3 times more than that of the Ti-6Al-4V alloy substrate (350-370HV0.2). The cladding layer mainly consisted of α-Ti (Al), β-Al (Ti), Ti3Al, TiAl, Al3Ti and TiC phase. There phases were beneficial to improve the hardness and wear resistance of the cladding layer.  相似文献   

9.
In this work, the effects of plasma nitriding (PN) and nitrocarburizing on HVOF-sprayed stainless steel nitride layers were investigated. 316 (austenitic), 17-4PH (precipitation hardening), and 410 (martensitic) stainless steels were plasma-nitrided and nitrocarburized using a N2 + H2 gas mixture and the gas mixture containing C2H2, respectively, at 550 °C. The results showed that the PN and nitrocarburizing produced a relatively thick nitrided layer consisting of a compound layer and an adjacent nitrogen diffusion layer depending on the crystal structures of the HVOF-sprayed stainless steel coatings. Also, the diffusion depth of nitrogen increased when a small amount of C2H2 (plasma nitrocarburizing process) was added. The PN and nitrocarburizing resulted in not only an increase of the surface hardness, but also improvement of the load bearing capacity of the HVOF-sprayed stainless steel coatings because of the formation of CrN, Fe3N, and Fe4N phases. Also, the plasma-nitrocarburized HVOF-sprayed 410 stainless steel had a superior surface microhardness and load bearing capacity due to the formation of Cr23C6 on the surface.  相似文献   

10.
The WC-Co/(Ti, W)C graded cemented carbide was prepared by spark plasma sintering. The substrate is WC-8Co, and the hard layer is (Ti, W)C solid-solution. The effects of sintering temperature and holding time on the microstructure and properties of graded cemented carbide were analyzed. The hard layer is mainly formed by dissolving WC in the Co-phase and then by solid-solution reaction with TiC. As the sintering temperature increases, the migration rate of WC increases. When the holding time is 5 min, the thickness and the W content of the (Ti, W)C solid-solution hard layer increases with the increasing of sintering temperature. The thickness of the (Ti, W)C solid-solution can reach 51 ± 2 μm at the sintering temperature of 1700 °C for the holding time of 5 min. The hardness of hard layer surface increases first and then decreases with the increasing of sintering temperature. The Vickers hardness is the highest at 1600 °C, which can reach HV0.221.53GPa. As the holding time increases, the thickness of the solid-solution hard layer increases, but the rate of growth decreases. As the thickness increases, the difference in the W element concentration between the solid-solutions of the same pitch decreases along the layer depth direction, and W element concentration in the entire hard layer increases. The oxidation behavior of graded cemented carbide at 400 °C and 600 °C was investigated. The (Ti, W)C hard layer has superior oxidation resistance relative to the WC-Co substrate.  相似文献   

11.
Laser surface cladding with Al-Si powders was applied to a Mg-6Zn-1Ca magnesium alloy to improve its surface properties. The microstructure, phase components and chemical compositions of the laser-clad layer were analyzed by using X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The results show that the clad layer mainly consists of α-Mg, Mg2Si dendrites, Mg17Al12 and Al3Mg2 phases. Owing to the formation of Mg2Si, Mg17Al12 and Al3Mg2 intermetallic compounds in the melted region and grain refinement, the microhardness of the clad layer (HV0.025 310) is about 5 times higher than that of the substrate (HV0.025 54). Besides, corrosion tests in the NaCl (3.5%, mass fraction) water solution show that the corrosion potential is increased from –1574.6 mV for the untreated sample to –128.7 mV for the laser-clad sample, while the corrosion current density is reduced from 170.1 to 6.7 µA/cm2. These results reveal that improved corrosion resistance and increased hardness of the Mg-6Zn-1Ca alloy can be both achieved after laser cladding with Al-Si powders.  相似文献   

12.
采用等离子堆焊技术在Q235铝电解打壳锤头表面堆焊F40合金粉末熔覆层。利用扫描电镜、能谱仪和显微硬度计等分析等离子堆焊层的微观组织、微区成分和硬度分布。利用磨擦磨损仪对试样进行耐磨性测试,通过恒电位法评估堆焊层和基体的耐蚀性能。结果表明,堆焊层与基体形成了良好的冶金结合,堆焊层为典型的柱状晶组织。等离子堆焊层平均显微硬度为444HV0.1,为基体的2倍;耐磨性为基体的1.6倍;腐蚀速率Rcorr为3.524×10-4 mm/a,为基体的1/(4.2×104)。等离子堆焊后Q235钢材料的耐磨性、硬度和耐腐蚀性均有显著提高,有望提高电解铝打壳锤头的耐磨耐蚀性能。  相似文献   

13.
The oil-quenched 30CrMnSiA steel specimens have been pulse plasma-nitrided for 4 h using a constant 25% N2-75% H2 gaseous mixture. Different nitriding temperatures varying from 400 to 560 °C have been used to investigate the effects of treatment temperature on the microstructure, microhardness, wear, and corrosion resistances of the surface layers of the nitrided specimens. The results show that significant surface-hardened layer consisting of compound and diffusion layers can be obtained when the oil-quenched steel (α′-Fe) are plasma-nitrided at these experimental conditions, and the compound layer mainly consists of ε-Fe2-3N and γ′-Fe4N phases. Lower temperature (400-500 °C) nitriding favors the formation of ε-Fe2-3N phase in surface layer, while a monophase γ′-Fe4N layer can be obtained when the nitriding is carried out at a higher temperature (560 °C). With increasing nitriding temperature, the compound layer thickness increases firstly from 2-3 μm (400 °C) to 8 μm (500 °C) and then decreases to 4.5 μm (560 °C). The surface roughness increases remarkably, and both the surface and inner microhardness of the nitrided samples decrease as increasing the temperature. The compact compound layers with more ε-Fe2-3N phase can be obtained at lower temperature and have much higher wear and corrosion resistances than those compound layers formed employing 500-560 °C plasma nitriding.  相似文献   

14.
The aim of this work is to investigate microstructure, corrosion resistance characteristics and nanohardness of the oxide layer on AZ91 Mg alloy by applying different voltage with KMnO4 contained solution. There are lots of closed pores that are filled with another oxide compound compared with the typical surface morphology with pore coated until 350 V of coating voltage. The thickness of oxide layer increases with increasing coating voltage. The oxide layer formed on AZ91 Mg alloy in electrolyte with potassium permanganate consists of MgO and Mn2O3. Corrosion potential of the oxide layer on AZ91 Mg alloy obtained at different plasma electrolytic oxidation(PEO) reaction stages increases with increasing coating voltage. The corrosion resistance of AZ91 Mg alloy depends on the existence of the manganese oxide in the oxide layer. The inner barrier layer composed of the MgO and Mn2O3 may serve as diffusion barrier to enhance the corrosion resistance and may partially explain the excellent anti-corrosion performance in corrosion test. Nanohardness values increase with increasing coating voltage. The increase in the nanohardness may be due to the effect of manganese oxide in the oxide layer on AZ91 Mg alloy coated from electrolyte containing KMnO4.  相似文献   

15.
Commercially pure aluminum (CP-Al) powder was deposited by the cold spray process onto AZ91D magnesium (Mg) substrates that had been subjected to three different heat-treatment conditions: namely, as-cast (F), homogenized (T4), and artificially aged (T6). The substrate hardness was measured to be 80.7?±?1.8, 73.7?±?4.0, and 103.6?±?7.4 HV0.025 for the F-, T4-, and T6-Mg alloy substrates respectively. Thick (~400???m) and dense (below 1% porosity) Al coatings have been obtained. After post-deposition heat treatment at 400?°C, the intermetallic Mg17Al12 (??) and Al3Mg2 (??) phases with different thicknesses were found to have formed at the coating/substrate interface depending on the holding time. While no significant thickness differences of the intermetallic layers were detected in the cases of F- and T6-AZ91D substrates, thicker layers formed on the T4-AZ91D substrate. It is believed that the higher Al concentration in the T4-AZ91D solid solution within the ??-Mg could diffuse and contribute more easily to the growth of the intermetallic phases. The hardness of the ??- and ??-phase was measured to be 260.5?±?10.7 HV0.025 and 279.6?±?13.7 HV0.025, respectively. Shear strength test results revealed lower adhesion strength after heat treatment, which is attributed to the presence of brittle intermetallic layers at the coating/substrate interface.  相似文献   

16.
采用高能研磨诱导的机械合金化方法制备了Fe-Cr-Mn基不锈钢合金粉末;对机械合金化粉末分别进行了退火和热压烧结,分析了退火过程中的相变规律,并对热压烧结获得的奥氏体不锈钢进行了组织和耐蚀性能研究。结果表明:机械合金化获得的不锈钢合金粉由亚稳态的纳米晶铁素体构成;退火/热压烧结处理后,铁素体逐渐转变为热力学上更加稳定的奥氏体,相变温度介于498℃到730℃之间;对机械合金化16 h的合金粉末在900℃、200 MPa条件下热压烧结1h获得了Fe-Cr-Mn基奥氏体不锈钢,其平均晶粒尺寸为亚微米级且表现出高硬度和良好的耐蚀性能,其HV硬度值约为5350 MPa、自腐蚀电位和自腐蚀电流密度分别为–0.28 V和1.43×10-9A·cm-2。  相似文献   

17.
In this article, the effect of electrolyte composition on the characteristics of generated layer by plasma electrolytic nitrocarburizing process is studied. The characterization of the layer was carried out by means of SEM, x-ray diffraction, and EIS techniques. The relationship between workpiece temperature and the chemical composition of electrolyte was determined during the process. Three distinct regions in the temperature-voltage curves were observed. The effect of electrolyte's composition on the electrical parameters such as critical voltage, voltage of plasma formation, current density, and electrolyte conductivity was investigated. XRD studies showed that in addition to nitride phases, Fe3O4 phase also is generated. Moreover, EIS studies indicated that the corrosion resistance of the samples processed with higher water contents is less than the samples processed with lower water contents.  相似文献   

18.
Si3N4-TaC and Si3N4-ZrC composite ceramics with sintering additives were consolidated in the sintering temperature range of 1500–1600 °C using a resistance-heated hot-pressing technique. The addition of 20–40 mol% carbide improved the sinterability of the ceramics. The ceramics were densely sintered under 0–40 mol% TaC or ZrC at 1500 °C, 0–80 mol% TaC at 1600 °C, and 0–60 mol% ZrC at 1600 °C. In ceramics sintered at 1500 °C, the proportion of α-Si3N4 was larger than that of β-SiAlON; α-Si3N4 transformed mostly to β-SiAlON at 1600 °C. Carbide addition was effective in inhibiting α-Si3N4-to-β-SiAlON phase transformation. Young's modulus for the dense Si3N4-TaC and Si3N4-ZrC ceramics increased with the carbide amount, and the hardness of dense Si3N4-ZrC and Si3N4-TaC ceramics increased from 14 GPa to 17 GPa with increasing α-Si3N4 content. Dense Si3N4-TaC and Si3N4-ZrC ceramics, with larger quantities of α-Si3N4 sintered at 1500 °C, exhibited high hardness; the fracture toughness of these ceramics decreased with increasing α-Si3N4 proportion. Both the hardness and fracture toughness of the dense Si3N4-TaC and Si3N4-ZrC ceramics were strongly related to the proportion of α-Si3N4 in the sintered body.  相似文献   

19.
In order to analyze the effect of voltage during micro-arc oxidation (MAO) on corrosion and wear properties of Ti6Al4V (TC4), the MAO technology was employed to treat TC4 samples fabricated by selective electron beam melting (SEBM) at the voltages of 400, 420 and 450 V. The results show that the metastable anatase phase gradually transforms to rutile phase with oxidation time and temperature increasing. The surface morphology of coating contains numerous micropores with uniform size distribution. Cracks and pores over 10 μm are found on MAO-TC4 sample with applied voltage of 450 V. The thickness of MAO coating is positively correlated with the voltage. The corrosion resistance and wear resistance are related to phase composition, micropore size distribution on the surface and film thickness. When the voltage is 420 V, the coating shows the smallest corrosion current density (0.960×10−7 A/cm2) and the largest resistance (7.17×105 Ω·cm2). Under the same load condition, the coating exhibits larger friction coefficient and wear loss than the TC4 substrate. With the increase of voltage, the wear mechanism of the coating changes from abrasive wear to adhesive wear, and the adhesive wear is intensified at applied voltage of 450 V, with a maximum friction coefficient of 0.821.  相似文献   

20.
Nanostructural Al2O3 coatings were formed on a steel substrate surface using a multichamber detonation sprayer. The Al2O3 coatings were characterized by a dense microstructure with porosity below 1% and hardness of 1300 ± 25 HV0.3. The transition layer between the coating and substrate was up to 15 μm thick, containing Fe-Al-type intermetallic compounds (FeAl3, Fe2Al5). Postdeposition heat treatment of the samples at 850 °C for 3 h was carried out in air and argon environments. The effect of heat treatment on the microstructure and microhardness of the Al2O3 coatings was investigated by optical microscopy, scanning and transmission electron microscopy, scanning probe microscopy, x-ray phase analysis, and Vickers hardness testing. A positive impact of postcoating heat treatment on the coating microstructure and microhardness was observed. Heat treatment resulted in an increase in the coating hardness from 1300, to 1350 ± 25 HV0.3 and 1600 ± 25 HV0.3 after annealing in air and argon, respectively. Heat treatment in argon led to a more significant increase in the α-Al2O3 phase from 47 to 81%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号