首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fiber spinning technique of electrospinning was optimized in order to prepare unidirectional aligned, structurally oriented, and mechanically useful carbon precursor fibers with diameters in the nanoscale range. The fiber spinning velocity and fiber draw ratio was measured to be between 140 and 160 m/s and 1:300,000, respectively, for fibers spun from 10 wt% polyacrylonitrile (PAN) solutions with dimethylformamide (DMF). A high-speed, rotating target was used to collect unidirectional tows of PAN fibers. Aligned and (+) birefringent fibers with diameters between 0.27 and 0.29 μm (FESEM) were collected from electrospinning 15 wt% PAN in DMF solutions at 16 kV onto a target rotating with a surface velocity between 3.5 and 12.3 m/s. Dichroism measurements (Polarized FTIR) of the nitrile-stretching vibration show an increase in the molecular orientation with take-up speed. Wide angle X-ray diffraction patterns (WAXD) show equatorial arcs from the reflection at and (1120) reflection at A maximum chain orientation parameter of 0.23 was determined for fibers collected between 8.1 and 9.8 m/s. Twisted yarns of highly aligned PAN nanofibers with twist angles between 1.1 and 16.8° were prepared. The ultimate strength and modulus of the twisted yarns increase with increasing angle of twist to a maximum of 162±8.5 MPa and 5.9±0.3 GPa, respectively, at an angle of 9.3°.  相似文献   

2.
An additional centrifugal field applied to an electrostatic field in a novel electrospinning technique was proposed in this study. An additional centrifugal field can not only remove bending instability of electrically charged liquid jets during the electrospinning process but can also fabricate aligned and molecularly oriented nanofibers. The results indicated that combining a strong stretching force from an additional centrifugal field and an electrostatic field can be used to align polymer chains parallel to the nanofiber axis, producing polyacrylonitrile (PAN) nanofibers with superior molecular orientation and mechanical properties. The optimal stretching force of an electrically rotating viscoelastic jet was obtained from high-speed videography and dimensionless groups (Re, We, and Oh numbers) analysis. The dichroic ratio (D) was 0.78, and the chain orientation factor (f), measured via Polarized FT-IR was 0.21. These measurements indicated an increase in the molecular orientation for the fabricated PAN nanofibers via the optimal stretching force. The elastic modulus of PAN nanofibers with f = 0.21 was 6.29 GPa and 4.55 GPa when measured by atomic force microscopy (AFM) and nanoindenter experiments, respectively. These results demonstrated that superior mechanical properties of PAN nanofibers could be improved by conducting the proposed electrospinning technique. Furthermore, carbon nanofibers produced from the optimal PAN nanofibers through the proposed method could potentially be applied for the reinforcement of composites.  相似文献   

3.
Upward needleless electrospinning of multiple nanofibers   总被引:2,自引:0,他引:2  
A.L. Yarin  E. Zussman 《Polymer》2004,45(9):2977-2980
A new approach to electrospinning of polymer nanofibers is proposed. A two-layer system, with the lower layer being a ferromagnetic suspension and the upper layer a polymer solution, is subject to a normal magnetic field provided by a permanent magnet or a coil. As a result, steady vertical spikes of magnetic suspension perturbed the interlayer interface, as well as the free surface of the uppermost polymer layer. When a normal electric field is applied in addition to the system, the perturbations of the free surface become sites of jetting directed upward. Multiple electrified jets undergo strong stretching by the electric field and bending instability, solvent evaporates and solidified nanofibers deposit on the upper counter-electrode, as in an ordinary electrospinning process. However, the production rate is shown to be higher.  相似文献   

4.
静电纺丝制备聚丙烯腈纳米纤维及其预氧化   总被引:1,自引:0,他引:1  
利用聚丙烯腈/二甲基甲酰胺纺丝溶液由静电纺丝制备了聚丙烯腈纳米纤维,纳米纤维的直径在220~760nm。随着聚合物溶液浓度和纺丝施加电压的升高,纳米纤维的直径变大。采用热分析和热重分析研究了纳米纤维的热性能,还用红外光谱对纳米纤维预氧化过程分子化学结构的变化进行了表征,结果表明,纳米纤维有一个很尖锐的放热峰,是聚丙烯腈均聚物典型的放热峰。随着预氧化温度的升高,纤维的内部分子结构发生了变化,表现在红外光谱上最突出的是C≡N在2243~2241cm^-1峰的降低,以及C—H在1684cm^-1峰的降低。  相似文献   

5.
6.
Liwen Ji 《Polymer》2010,51(19):4368-16390
Novel core-sheath nanofibers, composed of polyacrylonitrile (PAN) core and polypyrrole (PPy) sheath with clear boundary between them, were fabricated by electrospinning PAN/FeCl3·6H2O bicomponent nanofibers and the subsequent surface-initiated polymerization in a pyrrole-containing solution. By adjusting the concentration of FeCl3·6H2O, the surface morphology of PPy sheath changed from isolated agglomerates or clusters to relatively uniform thin-film structure. Thermal properties of PAN-PPy core-sheath nanofibers were also characterized. Results indicated that the PPy sheath played a role of inhibitor and retarded the complex chemical reactions of PAN during the carbonization process.  相似文献   

7.
Graphitic carbon nanofibers (GCNFs) with diameters of approximately 300 nm were developed using bundles of aligned electrospun polyacrylonitrile (PAN) nanofibers containing phosphoric acid (PA) as the innovative precursors through thermal treatments of stabilization, carbonization, and graphitization. The morphological, structural, and mechanical properties of GCNFs were systematically characterized and/or evaluated. The GCNFs made from the electrospun PAN precursor nanofibers containing 1.5 wt.% of PA exhibited mechanical strength that was 62.3% higher than that of the GCNFs made from the precursor nanofibers without PA. The molecules of PA in the electrospun PAN precursor nanofibers initiated the cyclization and induced the aromatization during stabilization, as indicated by the FT-IR and TGA results. The stabilized PAN nanofibers possessed regularly oriented ladder structures, which facilitated the further formation of ordered graphitic structures in GCNFs during carbonization and graphitization, as indicated by the TEM, XRD, and Raman results.  相似文献   

8.
Electrospun polyacrylonitrile (PAN) copolymer nanofibers with diameters of ∼0.3 μm were prepared as highly aligned bundles. The as-electrospun nanofiber bundles were then stretched in steam at ∼100 °C into 2, 3, and 4 times of the original lengths. Subsequently, characterizations and evaluations were carried out to understand morphological, structural, and mechanical properties using SEM, 2D WAXD, polarized FT−IR, DSC, and mechanical tester; and the results were compared to those of conventional PAN copolymer microfibers. The study revealed that: (1) the macromolecules in as-electrospun nanofibers were loosely oriented along fiber axes; although such an orientation was not high, a small extent of stretching could effectively improve the orientation and increase the crystallinity; (2) most of macromolecules in the crystalline phase of as-electrospun and stretched nanofibers possessed the zig-zag conformation instead of the helical conformation; and (3) the post-spinning stretching process could substantially improve mechanical properties of the nanofiber bundles. To the best of our knowledge, this study represented the first successful attempt to stretch electrospun nanofibers; and we envisioned that the highly aligned and stretched electrospun PAN copolymer nanofibers could be an innovative type of precursor for the development of continuous nano-scale carbon fibers with superior mechanical strength.  相似文献   

9.
Conductive polypyrrole nanofibers with diameters in the range of about 70-300 nm were obtained using electrospinning processes. The conductive nanofibers had well-defined morphology and physical stability. Two methods were employed. Electrospun nanofibers were prepared from a solution mixture of polypyrrole (PPy), and poly(ethylene oxide) (PEO) acted as a carrier in order to improve PPy processability. Both the electrical conductivity and the average diameter of PPy nanofibers can be controlled with the ratio of PPy/PEO content. In addition, pure (without carrier) polypyrrole nanofibers were also able to be formed by electrospinning organic solvent soluble polypyrrole, [(PPy3)+ (DEHS)]x, prepared using the functional doping agent di(2-ethylhexyl) sulfosuccinate sodium salt (NaDEHS) [Jang KS, Lee H, Moon B. Synth Met 2004;143:289-94. [24]]. Electrospun blends of sulfonic acid (SO3H)-bearing water soluble polypyrrole, [PPy(SO3H)-DEHS], with PEO acting as a carrier, are also reported. The factors that facilitate the formation of electrical conduction paths through the electrospun nanofiber segments are discussed.  相似文献   

10.
The nickel-carbon nanofibers (Ni-C NFs) were fabricated by the electrospinning of poly(vinyl alcohol) (PVA) and nickel acetate tetrahydrate (NiAc) solution precursor with succedent PVA pyrolyzation and calcination process. The microwave absorption performance and electromagnetic (EM) parameters of the NFs were researched over the frequency range of 2.0–18.0?GHz. Both the impedance matching and EM wave absorption properties of the Ni-C NFs were improved by changing the carbonization temperature. The effect of graphitization degree on reflection loss (RL) and the possible loss mechanisms were directly displayed in the comparative study of each sample. The optimal RL value of ??44.9?dB and an effective frequency bandwidth of 3.0?GHz under a thickness of 3.0?mm can be reached by a sample calcined at 650?°C. These lightweight Ni-C NFs composites can be promising candidates for EM wave absorbers due to the combination of multiple loss mechanisms, nano-size effect and good impedance matching between Ni nanoparticles and CNFs.  相似文献   

11.
Liwen Ji 《Polymer》2009,50(2):605-246
In this work, we explore the electrospinning of polyacrylonitrile (PAN)/zinc(II) chloride (ZnCl2) composite nanofibers and the response of these nanofibers to hydrogen sulfide (H2S). Solution properties, including surface tension, viscosity, and conductivity, have been measured and integrated with the results of a variety of other analytical techniques to investigate the effects of ZnCl2 salt on the structure and thermal properties of electrospun nanofibers. It is found that the addition of ZnCl2 reduces the diameter and inhibits the instantaneous cyclization reaction of these nanofibers. Additionally, exposing PAN/ZnCl2 fibers to H2S leads to the formation of PAN/zinc sulfide (ZnS) composite nanofibers that contain ZnS crystals on the surface. These results indicate that PAN/ZnCl2 composite nanofibers could find applications in H2S sensing and removal, or as precursors for semiconductor ZnS-coated polymer nanofibers.  相似文献   

12.
Carbon nanofibers with diameters of 200-300 nm were developed through stabilization and carbonization of aligned electrospun polyacrylonitrile (PAN) nanofiber bundles. Prior to the oxidative stabilization in air, the electrospun PAN nanofiber bundle was tightly wrapped onto a glass rod, so that tension existed during the stabilization. We also investigated several carbonization procedures by varying final carbonization temperatures in the range from 1000 to 2200 °C. The study revealed that: (1) with increase of the final carbonization temperature, the carbon nanofibers became more graphitic and structurally ordered; (2) the carbon nanofiber bundles possessed anisotropic electrical conductivities, and the differences between the parallel and perpendicular directions to the bundle axes were over 20 times; and (3) the tensile strengths and Young's moduli of the prepared carbon nanofiber bundles were in the ranges of 300-600 MPa and 40-60 GPa, respectively.  相似文献   

13.
Huan Pan  Long Hu  Xiaojie Cui 《Polymer》2006,47(14):4901-4904
A novel and simple technique of manufacturing uniaxially aligned electrospun fibers with diameter of sub-micrometers is described. Compared with typical electrospinning setup, two oppositely placed metallic needles are used, and they are connected to positive and negative voltages, respectively. Fibers coming out of the two needles combine in a yarn, which is wound by a cylinder collector rotating at a high speed. Fibers manufactured by this method are continuous, well-aligned, and can be deposited over a large area. Poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) are used to manufacture aligned fibers. An analysis of the possible mechanism of the fibers alignment is given. The influences of the concentration of the solution and the take-up velocity on the alignment of fibers were investigated.  相似文献   

14.
M. Wang 《Polymer》2004,45(16):5505-5514
Superparamagnetic polymeric nanofibers were produced via an electrospinning technique from colloidally-stable suspensions of magnetite nanoparticles in polyethylene oxide and polyvinyl alcohol solutions. The magnetite nanoparticles were aligned in columns parallel to the fiber axis direction within the fiber by the electrospinning process. The polymer/magnetite nanofibers exhibited superparamagnetic behavior at room temperature, and deflected in the presence of an applied magnetic field. The mechanical properties of the nanofibers were maintained or improved after incorporating the magnetite nanoparticles.  相似文献   

15.
Nano-structured poly(ε-caprolactone) (PCL) nonwoven mats were prepared by electrospinning process. In this study, three types of solution were used. One dissolved in only methylene chloride (MC), the second dissolved in mixture of MC and N,N-dimethylformamide (DMF), the third dissolved in mixture of MC and toluene. MC, toluene and DMF are a good, poor, and nonsolvent for PCL, respectively. For the MC only, electrospun fibers had very regular diameter of about 5500 nm, but electrospinng is not facilitated. For the mixture of MC and DMF, electrospinning is certainly enhanced as well as fiber diameter decreased dramatically as increasing DMF volume fraction. It was due to high electric properties of solution such as dielectric constant and conductivity. Whereas, as increasing toluene volume fraction, electrospinning is strictly restricted due to very high viscosity and low conductivity. As the results, it has regarded that solution properties is one of the important parameter in electrospinning. Properties such as conductivity, surface tension, viscosity and dielectric constant of the PCL solutions prepared from three types of solvent system were studied. The morphology, crystallinity and mechanical properties of electrospun PCL nonwoven mats were characterized by scanning electron microscopy (SEM), wide angle X-ray diffraction (WAXD) and universal testing method (UTM), respectively.  相似文献   

16.
The electrochemical behavior of electrospun polypyrrole (PPy)/sulfonated-poly(styrene-ethylene-butylenes-styrene) (S-SEBS) composite nanofibers was investigated, compared to PPy/poly(styrene-ethylene-butylenes-styrene) (SEBS) fibers prepared by a casting method. The electrospun PPy/S-SEBS (E-PSS) fibers were about 300 nm in average diameter, while PPy/SEBS composite (C-PS) prepared by a casting method showed the granular macroporous structure. The effect by both electrospinning and sulfonation results in higher electrochemical capacity due to the increase of doping level, high electrical conductivity, low interfacial resistance, and high reversibility by easy intercalation of Li ion. In addition, sulfonated SEBS induces higher elongation force to jet in the processing of electrospinning due to the role of dopant.  相似文献   

17.
《Ceramics International》2017,43(13):9831-9837
Alumina borate nanofibers were fabricated by electrospinning combined with sol-gel method using aluminum acetate (Al(OH)2(OOCCH3)·1/3H3BO3, stabilized with boric acid) and polyvinyl pyrrolidone (PVP) as raw materials. As-spun composite nanofibers were electrospun from the spinning solutions prepared with different PVP contents. The as-spun nanofibers were calcined at 1000 ℃ and the microstructures of the calcined nanofibers were investigated. The results showed that with the content of PVP increased, the diameters of the alumina borate nanofibers increased, and the temperatures at which the Al4B2O9 phase formed and Al4B2O9 transformed to Al18B4O33 also increased. However, the crystallinity of the calcined nanofibers decreased with the increase of the PVP content. The grains became smaller and more uniform due to the increasing amount of voids and cracks generated by the decomposition of PVP.  相似文献   

18.
The development of various morphologies such as beads, beaded fibers, pure fibers and their scaling as a function of solution properties and processing variables in electrospinning is reported. Polyvinyl pyrrolidone (PVP), at various molecular weights and concentrations dissolved in a mixture of water and ethanol, was used to prepare different morphologies and sizes. The morphology of beads and fibers was predicted and measured based on an entanglement number diagram and rheological measurements. A constant-current electrospinning system was employed to control the processing variables. Scaling laws related to solution properties and processing variables (voltage, current and flow rate), and their effect on the fiber/bead diameter, were discussed. Viscosity (η), flow rate (Q), and current (I) were found to play significant roles in the control of morphology during electrospinning. Processing variables involved in electrospinning followed a power scaling that was in agreement with the model. The dependence of fiber diameter (df) on the Q/I for different molecular weights and concentrations also followed a power law, and the scaling varied between 0.11-0.29 for beaded fiber and 0.36-0.51 for pure fiber. In addition, the relationship between viscosity and fiber diameter followed scaling laws: df ∼ η0.98.  相似文献   

19.
Buckling of jets in electrospinning   总被引:1,自引:0,他引:1  
Tao Han  Alexander L. Yarin 《Polymer》2007,48(20):6064-6076
Various buckling instabilities of electrospinning jets were observed and compared with the buckling instabilities of uncharged fluid jets. Buckling instability arises due to jet compression at impingement on a collector surface and occurs independently of the electrical bending instability. The velocity, diameter, density and viscosity of the electrospinning jets are the key factors that determine the buckling frequency. The electrically charged jets impinging onto grounded, horizontal or inclined (wedge-like) electrodes moving laterally at a constant velocity are studied experimentally. Straight and bending (electrospinning) jets emerge at short and sufficiently long inter-electrode distances, respectively. The experiments show that both straight segment and bending jets, when impinging onto a counter-electrode, buckled and produced patterns of meandering deposits. In the case of bending electrospun jets these short-length buckling patterns were superimposed on the bending loops found in the deposits. Buckling-related and bending-related morphologies are easily distinguishable. The buckling patterns have frequencies of the order of 105-106 Hz, whereas the bending loops are formed at the frequencies of the order of 103 Hz. The deposited buckling patterns include sinuous, zigzag-like, figures-of-eight, recurring curves, coiled and other structures that resembled many patterns created by uncharged jets of highly viscous fluids impinging a hard flat surface. In addition, several new morphologies which were not observed before with uncharged jets were found. The experimentally measured frequencies of the buckling patterns were compared to the theoretical predictions and a reasonable agreement was found.  相似文献   

20.
Submicron polystyrene (PS) fibers were prepared by electrospinning of an aqueous dispersion of PS latex and a small amount of poly(vinyl alcohol) (PVA) and subsequent extraction by water. Depending on particle size, surfactant, ratio of PS:PVA, and applied voltage fibers of different morphology and water stability were obtained. Analysis of latex fibers by TEM revealed hexagonal packaging of particles within the fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号