首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents a new high-speed and low offset latch comparator. The proposed offset compensation technique for latch comparator enables the preamplifier design relaxation for high-speed and high-resolution analog-to-digital converters. Employing the negative resistance of regeneration latch to enhance the comparator gain in input tracking phase is the key idea to reduce the latch input referred offset voltage. The Monte-Carlo simulation results for the designed comparator in 0.18 μm CMOS process show that equivalent input referred offset voltage is 200 μV at 1 sigma while it was 26 mV at 1 sigma before offset cancellation. The comparator dissipates 600 μW from a 1.8 V supply while operating in 500 MHz clock frequency.  相似文献   

2.
Due to the rising demand for low-power portable battery-operated electronic devices, there is an increasing need for low-voltage low-power low-drop-out (LDO) regulators. This provides motivation for research on high-gain wide-bandwidth amplifiers driving large capacitive loads. These amplifiers serve as error amplifiers in low-voltage LDO regulators. Two low-power efficient three-stage amplifier topologies suitable for large capacitive load applications are introduced here: single Miller capacitor compensation (SMC) and single Miller capacitor feedforward compensation (SMFFC). Using a single Miller compensation capacitor in three-stage amplifiers can significantly reduce the total capacitor value, and therefore, the overall area of the amplifiers without influencing their stability. Pole-splitting and feedforward techniques are effectively combined to achieve better small-signal and large-signal performances. The 0.5-/spl mu/m CMOS amplifiers, SMC, and SMFFC driving a 25-k/spl Omega///120-pF load achieve 4.6-MHz and 9-MHz gain-bandwidth product, respectively, each dissipates less than 0.42 mW of power with a /spl plusmn/1-V power supply, and each occupies less than 0.02 mm/sup 2/ of silicon area.  相似文献   

3.
《Electronics letters》2008,44(21):1225-1226
A new switched-capacitor (SC) common-mode feedback (CMFB) circuit for fully-differential operational amplifiers (op-amps) is presented. By reducing the amplifier capacitive load with respect to conventional SC-CMFB schemes, the proposed solution guarantees a significant improvement of the op-amp speed performance. A typical SC integrator employing the new CMFB has also been designed in 0.35 μm CMOS technology. Simulation results show that, for a given power consumption, the op-amp settling time can be about halved by using the proposed CMFB instead of the conventional one.  相似文献   

4.
An active-feedback frequency-compensation (AFFC) technique for low-power operational amplifiers is presented in this paper. With an active-feedback mechanism, a high-speed block separates the low-frequency high-gain path and high-frequency signal path such that high gain and wide bandwidth can be achieved simultaneously in the AFFC amplifier. The gain stage in the active-feedback network also reduces the size of the compensation capacitors such that the overall chip area of the amplifier becomes smaller and the slew rate is improved. Furthermore, the presence of a left-half-plane zero in the proposed AFFC topology improves the stability and settling behavior of the amplifier. Three-stage amplifiers based on AFFC and nested-Miller compensation (NMC) techniques have been implemented by a commercial 0.8-/spl mu/m CMOS process. When driving a 120-pF capacitive load, the AFFC amplifier achieves over 100-dB dc gain, 4.5-MHz gain-bandwidth product (GBW) , 65/spl deg/ phase margin, and 1.5-V//spl mu/s average slew rate, while only dissipating 400-/spl mu/W power at a 2-V supply. Compared to a three-stage NMC amplifier, the proposed AFFC amplifier provides improvement in both the GBW and slew rate by 11 times and reduces the chip area by 2.3 times without significant increase in the power consumption.  相似文献   

5.
The commonly used two-stage CMOS operational amplifier suffers from two basic performance limitations due to the RC compensation network around the second gain stage. First, it provides stable operation for only a limited range of capacitive loads, and second, the power supply rejection shows severe degradation above the open-loop pole frequency. The technique described provides stable operation for a much larger range of capacitive loads, as well as much improved V/SUB BB/ power supply rejection over very wide bandwidths for the same basic operational amplifier circuit. The author presents a mathematical analysis of this new technique in terms of its frequency and noise characteristics followed by its implementation in all n-well CMOS process. Experimental results show 70-dB negative power supply rejection at 100 kHz and an input noise density of 58 nV/(Hz)/SUP 1/2/ at 1 kHz.  相似文献   

6.
Two new power-saving schemes for high-performance VLSIs with a large-scale memory and many interface signals are described. One is a current-controlled latch sense amplifier that reduces the power dissipation by stopping sense current automatically. This sense amplifier reduces power without degrading access time compared with the conventional current-mirror sense amplifier. The other is a static power-saving input buffer (SPSIB) that reduces DC current in interface circuits receiving TTL high input level. The effectiveness of these new circuits is demonstrated with a 512-kb high-speed SRAM  相似文献   

7.
An automatic offset compensation scheme for CMOS operational amplifiers is presented. Offset is reduced by digitally adjusting the bias voltage of a programmable current mirror which is used as the load of the differential input stage. A 100% operating duty cycle is obtained by using a ping-pong structure. The offset compensation scheme is inherently time and temperature stable since the offset compensation is periodically performed with the ping-pong control. The proposed circuit has been fabricated using a 1.0 μm n-well CMOS process. The measured offset voltages of the test circuits are less than 400 μV in magnitude  相似文献   

8.
A modified frequency compensation technique is proposed for low-power area-efficient three-stage amplifiers driving medium to large capacitive loads. Coined hybrid cascode feedforward compensation (HCFC), the total compensation capacitor is divided and shared between two internal high-speed feedback loops instead of only one loop as is common in prior art. Detailed analysis of this technique shows significant improvement in terms of bandwidth and stability. This is verified for a 1.2-V amplifier driving a 500-pF capacitive load in 90-nm CMOS technology, where HCFC reduces the total capacitor size and improves the gain-bandwidth by at least 30% and 40% respectively, compared to the prevailing schemes.  相似文献   

9.
This paper proposes a low power SRAM using hierarchical bit line and local sense amplifiers (HBLSA-SRAM). It reduces both capacitance and write swing voltage of bit lines by using the hierarchical bit line composed of a bit line and sub-bit lines with local sense amplifiers. The HBLSA-SRAM reduces the write power consumption in bit lines without noise margin degradation by applying a low swing signal to the high capacitive bit line and by applying a full swing signal to the low capacitive sub-bit line. The HBLSA-SRAM reduces the swing voltage of bit lines to V/sub DD//10 for both read and write. It saves 34% of the write power compared to the conventional SRAM. An SRAM chip with 8 K/spl times/32 bits is fabricated in a 0.25-/spl mu/m CMOS process. It consumes 26 mW read power and 28 mW write power at 200 MHz with 2.5 V.  相似文献   

10.
11.
In this article, a simple offset cancellation technique based on a clocked high-pass filter with extremely low output offset is presented. The configuration uses the on-resistance of a complementary metal oxide semiconductor (CMOS) transmission gate (X-gate) and tunes the lower 3-dB cut-off frequency with a matched pair of floating capacitors. The results compare favourably with the more complex auto-zeroing and chopper stabilisation techniques of offset cancellation in terms of power dissipation, component count and bandwidth, while reporting inferior output noise performance. The design is suitable for use in biomedical amplifier systems for applications such as ENG-recording. The system is simulated in Spectre Cadence 5.1.41 using 0.6 μm CMOS technology and the total block gain is ~83.0 dB while the phase error is <5°. The power consumption is 10.2 mW and the output offset obtained for an input monotone signal of 5 μVpp is 1.28 μV. The input-referred root mean square noise voltage between 1 and 5 kHz is 26.32 nV/√Hz.  相似文献   

12.
This paper presents a partially switched-opamp technique for a high-speed, low-power pipelined analog-to-digital converter (ADC). Unlike a conventional switched-opamp technique, only the second stage of a two-stage opamp is switched with the enhanced power efficiency and the drawbacks of an opamp sharing technique and a conventional switched-opamp technique are addressed. The prototype of 8-bit 200-MS/s pipelined ADC is implemented in a 0.18-/spl mu/m CMOS process technology. This converter achieves 55.8-dB spurious free dynamic range, 47.3-dB signal-to-noise-plus-distortion ratio, 7.68 effective number of bits for a 90-MHz input at full sampling rate, and consumes 30-mW from a 1.8-V supply. The active area of the ADC is 0.15 mm/sup 2/.  相似文献   

13.
A TTL-compatible 64K static RAM with CMOS-bipolar circuitry has been developed using a 1.2-/spl mu/m MoSi gate n-well CMOS-bipolar technology. Address access time is typically 28 ns, with 225 mW active power and 100 nW standby power. A CMOS six-transistor memory cell is used. The cell size is 18/spl times/20 /spl mu/m, and the chip size is 5.95/spl times/6.84 mm. The n-p-n transistors are used in the sense amplifiers, voltage regulators, and level clamping circuits. The bipolar sense amplifiers reduce the detectable bit line swing, thus improving the worst-case bit line delay time and the sensing delay time. In order to reduce the word line delay, the MoSi layer, which has 5 /spl Omega//sheet resistivity, was used for the gate material. The n-well CMOS process is based on a scaled CMOS process, and collector-isolated n-p-n transistors and CMOS are integrated simultaneously without adding any extra process steps and without causing any degradation of CMOS characteristics. The n-p-n transistor has a 2-GHz cutoff frequency at 1 mA collector current.  相似文献   

14.
Current sensing in SRAMs is very promising to achieve high-speed operation in low-voltage applications. However, so far, a main limitation of the practical use of current sense amplifiers is the finite resistance of the bitline multiplexer (MUX). In this paper, the MUX itself and its influence on two types of current sense amplifiers is analyzed. It is shown that the MUX causes a significant performance degradation. A principle is presented to compensate for the bitline multiplexer by means of a current sense amplifier with improved feedback structure. The proposed solution is implemented in a 512×24 bit SRAM macro in 0.18-μm 1.8-V CMOS. It is shown by theory and measurements that, using the proposed circuit, it is possible to fully compensate for the MUX in terms of speed and signal amplitude with only little layout area penalty. A speed improvement due to the compensation of typically 0.5 ns is measured  相似文献   

15.
Hybrid cascode feedforward compensation (HCFC) is proposed for low-power area-efficient three stage amplifiers driving large capacitive loads. With no overhead in power or area, the total compensation capacitor is divided and shared between two internal high-speed loops instead of solely one loop as is common in prior art. Detailed analysis of HCFC shows significant improvement in terms of stability and bandwidth. This is verified for a 1.2-V amplifier driving a 500-pF capacitive load in 90-nm CMOS technology, where HCFC reduces the total capacitor size and improves the gain-bandwidth by at least 30 and 40 %, respectively, compared to the prevailing schemes.  相似文献   

16.
A bitline leakage current of an SRAM, induced by leakage current of the transmission transistors in the cells that are associated with the bitline, increases as the threshold voltage (VTH) of the transistors is reduced for high performance at low power-supply voltage (VDD). The increased bitline leakage causes slow or incorrect read/write operation of an SRAM because the leakage current acts as noise current for a sense amplifier. In this paper, the problem has been solved from a circuitry point of view, and the scheme which detects the bitline leakage current in a precharge cycle and compensates for it during a read/write cycle is proposed. Employing this scheme, the SRAM with 360-μA bitline leakage current can perform a read/write operation at the same speed as one that has no bitline leakage current. This enables a 0.1-V reduction in VTH, and keeps the VTH and delay scalability of a high-performance SRAM in technology progress. An experimental 8-Kb SRAM with 256 rows is fabricated in a 0.25-μm CMOS technology, which demonstrates the effectiveness of the scheme  相似文献   

17.
To overcome the offset voltage (V/sub OS/) of output buffer due to large variation on characteristics of thin-film transistor (TFT) in low-temperature polysilicon (LTPS) technology, a class-B output buffer with offset compensation circuit for the data driver is presented in this paper. This proposed class-B output buffer can operate at 50-kHz operation frequency with a 2-8-V output swing for extended graphic array (XGA) application, and it has been demonstrated in 3-/spl mu/m LTPS technology. Using the offset compensation technique, the V/sub OS/ of output buffer can be controlled within /spl plusmn/100 mV under 2-to-8 V signal operation to achieve a high resolution and quality liquid crystal display (LCD) panel.  相似文献   

18.
It is observed that there exists a half-pixel offset in vertical direction between top and bottom fields in interlaced sequence, and this half-pixel offset has an impact on performing motion vector scaling in multipicture motion-compensated prediction. However, the impact caused by this half-pixel offset is processed inconsiderately during motion vector derivation in the up-to-date video coding standards, where temporal motion vector predictor usually derives its forward or backward motion vector by performing motion vector scaling based on temporal distance. In this paper, an improved motion vector scaling technique is proposed to compensate the impact caused by the half-pixel offset between top and bottom fields. Motion vector scaling is performed on corresponding coordinates which represent the position relationship between top and bottom fields properly. Experimental results show that the proposed motion vector scaling technique improves coding efficiency for interlaced sequence, especially for bi-predictive pictures.  相似文献   

19.
This paper presents a new low-power high-speed fully static CMOS variable-time adder. The VLSI implementation proposed here is based on the statistical carry look-ahead addition technique. The new circuit takes advantage of an innovative way of using a composition of propagate signals and of appropriately designed overlapped execution modules to reduce average addition time, layout area, and power dissipation. A 56-bit adder designed as described here and realized using AMS 0.35-/spl mu/m CMOS standard cells at 3.3V supply voltage shows an average addition time of about 4.3 ns and a maximum power dissipation of only 50 mW at 200-MHz repetitive frequency using a silicon area of less than 0.23 mm/sup 2/.  相似文献   

20.
A novel technique for the continuous-time removal of the input offset voltage in operational amplifiers is presented. This scheme converts a conventional op-amp into a similar differential-in/differential-out op-amp with zero differential input offset voltage. The nonzero common-mode input offset voltage can be isolated using a sampled-data time-averaging technique and minimised by negative feedback.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号