首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以沸石咪唑酯骨架结构材料ZIF-8及硅酸四乙酯(TEOS)为原料制备ZIF-8-SiO2复合材料,并采用XRD、SEM、EDS等方法对ZIF-8-SiO2的结构及吸附U(VI)前后的形貌进行表征,结果表明ZIF-8-SiO2成功制备且对U(VI)具有良好的吸附作用。以静态吸附实验,分别考察了pH值、时间、温度、溶液初始铀浓度、盐浓度及超高压环境等对ZIF-8-SiO2吸附性能的影响。由实验结果可得,在初始浓度为80 mg·L?1时,25℃下ZIF-8-SiO2对U(VI)的最大实际吸附量为498 mg·g?1,根据Langmuir模型拟合结果分析得出,ZIF-8-SiO2对U(VI)的理论吸附量最高可达678.5 mg·g?1,且在200~500 MPa范围内,压强越高越有利于吸附。通过FTIR、XPS等方法对ZIF-8-SiO2吸附铀酰离子前后的结构进行分析,探究该吸附过程中可能存在的吸附机制。   相似文献   

2.
采用静电纺丝技术成功制备出沸石咪唑骨架材料(ZIF-8)/聚乙烯醇(PVA)静电纺丝膜。分别探究和优化了PVA浓度、纺丝电压、接收距离等参数对纤维膜形态结构的影响。对复合纳米纤维膜进行了形貌表征和成分分析。实验发现在ZIF-8的浓度为10wt%条件下,当PVA的浓度为7wt%、电压为40kV、接收距离为16cm时,可得到可纺性最好、形态均匀的纳米纤维膜,膜纤维的平均直径在240nm左右。将已经制备成功的ZIF-8/PVA复合纳米纤维用于吸附刚果红,在12h内吸附容量可达86mg/g,显示出良好的吸附能力。  相似文献   

3.
材料的结构形貌对其应用起到至关重要的作用, 中空结构因其独特的结构特征广泛应用于催化, 气体储存, 锂离子电池等领域。本文首先通过调控表面活性剂CTAB制备出大小一致的沸石咪唑骨架 (ZIF-8) 立方体, 然后利用TEOS和多巴胺来固定立方体ZIF-8的形貌, 接着通过退火以及刻饰的方法获得SiO2@C的中空立方体结构。通过X射线衍射、扫描电镜、透射电镜等一系列表征方法可知, 采用模板法制备出的SiO2@C不仅在尺寸上保持大小的高度一致并且具有规则的立方体结构。作为中空结构在实际应用中的典型例子, 将SiO2@C作为模板制备出的中空SiO2@C@MoS2结构, 具有优异的锂离子储存性能。在100 mA/g恒流充放电下循环100次后保持着930 mAh/g的放电比容量, 且在此过程中充放电循环效率均在95%以上。  相似文献   

4.
主要将通过磁控溅射技术制备所得的氧化锌@聚丙烯腈(ZnO@PAN)静电纺丝纳米纤维膜材料,利用溶剂热反应合成金属有机框架材料ZIF-8@聚丙烯腈(ZIF-8@PAN)纳米纤维膜材料,后经过900℃高温煅烧工序制备ZIF-8@PAN纳米纤维膜基多孔碳材料,并将其应用于水体中重金属离子镉的吸附。X射线衍射、红外光谱、扫描电镜分析表征结果表明,ZIF-8成功地在PAN纳米纤维膜上原位生长,经过高温煅烧,ZIF-8的结构并未明显改变。ZIF-8@PAN纳米纤维膜基多孔碳材料在水溶液中对镉离子具有良好的吸附效果。探究证明,吸附过程中,在溶液为中性条件下,且水浴加热35℃时,镉离子吸附效果最好,吸附效率最高可达到88%左右。  相似文献   

5.
以天然皮胶原纤维膜为底物,通过醛类化合物的交联剂作用,将毛杨梅单宁(myrica rubra)固定在皮胶原纤维上,制备出新型的膜吸附材料.系统研究了这种膜吸附材料对水溶液中U(Ⅵ)的吸附特性,结果表明:当温度为303K、pH5.0、U(Ⅵ)的初始浓度为263.15mg/L时,每克固化单宁膜吸附U(Ⅵ)的平衡吸附量为56.83mg,而且平衡吸附量随着温度的升高进一步增大;pH对吸附容量的影响较大,适宜的pH范围在5.0~8.0;这类膜材料的吸附平衡符合Freundlich方程,静态吸附动力学可以用拟二级速度方程来描述.连续吸附实验表明,当原料液中U(Ⅵ)的浓度为263.15mg/L、流出液体积为500mL时,单层膜的吸附率可达到90%以上;而用三层膜时,当流出液体积达到1000mL时也未在流出液中检测到U(Ⅵ).该类膜吸附U(Ⅵ)后用0.1mol/L的HNO3很容易解吸,而且再生后其吸附容量和性能基本不变.  相似文献   

6.
制备高效分离CO_2/N_2的气体分离膜一直是气体膜分离领域中的研究热点.采用简便的滴涂制膜方法,以聚砜(PSf)超滤膜为底膜、聚二甲基硅氧烷(PDMS)为过渡层,在制备PVAm-PEA分离功能层过程中直接引入ZIF-8纳米颗粒,制备了高选择性分离CO_2/N_2的新型固定载体复合膜.通过表征和性能测试,考察分析ZIF-8及其含量对复合膜形貌与气体渗透性能的影响.结果表明,ZIF-8颗粒的加入使复合膜表面形貌较空白膜粗糙,CO_2渗透速率降低了43%,CO_2/N_2分离因子增加了220%.在0.1 MPa条件下,ZIF-8质量分数为0.05%时,CO_2渗透速率为59 GPU,CO_2/N_2分离因子为202.  相似文献   

7.
朱娜娜  李越  高会元 《功能材料》2016,(4):4099-4104
以BTDA-ODA型聚酰亚胺为基质膜材料,2-甲基咪唑锌(ZIF-8)为掺杂剂,制备了聚酰亚胺基杂化膜(PI/ZIF-8)。运用FT-IR、XRD、SEM和EDS等表征方法,对ZIF-8含量不同的杂化膜的化学结构和微观结构进行了分析,并对杂化膜进行了CO_2和N_2单一气体渗透测试。结果表明,ZIF-8与PI两相完全相容且杂化膜对CO_2表现出很高的渗透选择性。当ZIF-8质量分数为7%(PI/7Z)时,CO_2的渗透系数为2.79×10~(-9) mol·m~(-2)s~(-1)Pa~(-1),相应的CO_2/N_2理想选择性系数达到最大值13.6,远大于努森扩散的分离系数0.79。  相似文献   

8.
TiO2-SiO2纳米多孔材料常压干燥制备   总被引:1,自引:0,他引:1  
以廉价的TiCl4和工业水玻璃为原料,通过溶胶-凝胶法制得了TiO2-SiO2复合湿凝胶,用三甲基氯硅(TMCS)/乙醇(EtOH)/己烷(Hexane)溶液对湿凝胶进行改性,再经常压干燥制备了TiO2-SiO2纳米多孔材料.利用扫描电子显微镜(SEM)、红外吸收光谱(FTIR)和N2吸附/解吸法对纳米多孔材料的形貌和性质进行了分析.结果表明,所制备的TiO2-SiO2纳米多孔材料为轻质块状固体,具有连续多孔结构,密度为0.14~O.25g/cm3,孔隙率为88.6%~93.6%,比表面积为716.8~802.7m2/g.吸附和光催化降解罗丹明B的结果表明,n(Ti):n(Si)=1:3的样品吸附率最高,20h时达到86%,n(Ti):n(Si)=1:2的样品光催化降解率最高,10h时可达到94%.  相似文献   

9.
金属有机骨架ZIF-8具有合适的孔道尺寸、优良的化学稳定性和热稳定性,在气体分离方面有潜在的应用价值.针对工业大孔载体成膜困难、不致密、通量低的问题,本文采用限制性内扩散法在大孔载体内部制备致密的ZIF-8膜,并对其合成机理进行探究,同时探究内扩散时间、晶化温度、溶剂的量等因素对膜分离性能的影响,采用X射线衍射、扫描电子显微镜等技术对膜的形貌和结构进行表征.研究结果表明,以甲醇作为溶剂,使用氧化锌凝胶,内扩散时间为10 s,在170℃晶化时间为10 h时,成功在管状大孔载体孔内制备致密的膜.单组分气体渗透实验结果表明,在25℃和0.1 MPa条件下,H2的渗透速率为5.53×10-7 mol/(m2·s·Pa),H2/CO2、H2/N2和H2/CH4的理想选择性分别为13.20、12.96和12.89.  相似文献   

10.
核废水中的放射性碘对人类健康和环境有严重的危害,但是由于碘在水中以多种形式存在,很难准确测定其在水中的含量。开发能够准确测定水中碘单质含量的方法,制备有效去除碘单质的材料对保护环境和人类健康尤其重要。为此,本研究首先提出了用环己烷萃取法测定碘单质浓度的方法,并且制备了两种沸石咪唑骨架材料ZIF-8和ZIF-67,研究了ZIF-8和ZIF-67对水环境中碘的吸附行为。利用分析仪器对ZIF-8和ZIF-67材料进行了表征。结果表明:两种材料都具有良好的化学结构和较大的比表面积。吸附动力学实验结果表明, 60 min内,两种材料对碘的吸附可以达到平衡,吸附行为更好地符合拟二级动力学模型。吸附热力学结果表明,两种材料在水中对碘的吸附过程均为线性吸附。ZIF-8和ZIF-67材料对碘单质的吸附量可高达2000 mg·g–1。  相似文献   

11.
纳米FeS比表面积大且还原性强,对Cr(Ⅵ)吸附性能优异,但不稳定、易团聚,为解决这一问题,本文以油菜花粉为生物模板,通过共沉淀-焙烧法制得仿生FeS复合材料(bioFeS)。通过SEM、XRD及XPS等方法对bioFeS复合材料的表面微观形态和结构进行了表征。以Cr(Ⅵ)为目标污染物,分别考察了吸附剂用量、反应时间、反应温度、初始Cr(Ⅵ)浓度和pH对bioFeS复合材料吸附Cr(Ⅵ)性能的影响,探究了反应机制。结果表明:油菜花粉生物模板成功分散了FeS,制得的bioFeS复合材料比表面积大,在反应时间为120 min、pH值为1、吸附剂投加量为0.2 g·L-1、反应温度为25℃的条件下,bioFeS复合材料对Cr(Ⅵ)的吸附量可达88.95 mg·g-1;该吸附过程符合准二级动力学和Langmuir等温吸附模型;共存离子NO3-和SO42-会抑制Cr(Ⅵ)的去除。结合吸附动力学、热力学及XPS表面元素分析可知bioFeS复合材料除铬机制主要是吸附及化...  相似文献   

12.
铀矿开采和冶炼等工艺产生大量低浓度铀废水,危害着生态环境和人类健康,从含铀废水中去除铀(VI)迫在眉睫。本文以UiO-66、壳聚糖(CS)为原料,采用交联法制备UiO-66/CS新型复合材料,通过静态吸附实验,考察不同pH值、吸附剂投加量、吸附时间及铀初始浓度等外部因素对U(VI)去除率的影响。通过SEM、FTIR、XPS等对UiO-66/CS材料进行表征分析,揭示吸附剂去除U(VI)的机制。结果表明:在铀初始浓度为5 mg/L,温度为298 K,p H为5,投加量为0.15 g/L,吸附时间120 min条件下,UiO-66/CS对U(VI)的去除率可达90.24%。吸附过程符合准二级动力学模型和Freundlich等温吸附模型。U(VI)吸附去除机制主要是-NH、-COOH、Zr-O、-OH等官能团与U(VI)发生络合作用。  相似文献   

13.
14.
15.
以ZIF-8及La掺杂ZIF-8为前驱体,经高温煅烧制备ZnO及La掺杂ZnO纳米颗粒.研究了La掺杂对ZnO纳米颗粒的形貌、晶体结构及气敏性能的影响.利用X射线衍射仪、扫描电子显微镜对材料的微结构进行表征,结果表明:La掺杂有利于获得更小粒径的类球形纳米结构,但La掺杂未改变ZIF-8及衍生ZnO纳米结构的晶体结构....  相似文献   

16.
含油废水的处理海上溢油问题及含油废水的排放对经济与环境带来了巨大的破坏。利用聚多巴胺将自制的双尺度ZIF-8/TiO2纳米粒子黏附到聚氨酯海绵,通过十八胺改性制备出超疏水油水分离海绵,通过FTIR、XRD等对其结构进行了表征分析;利用ZIF-8和TiO2两种纳米粒子构建双尺度粗糙结构,并深入探究了两种粒子的用量对复合涂层表面性能的影响。结果表明当纳米粒子ZIF-8和TiO2添加摩尔比为2∶1时,接触角达到最大值153°;复合海绵有良好的油水分离性能,吸收能力是其自重的40至118倍,分离效率平均在96%以上;在808 nm激光照射下10 s内温度可升高55.9℃,有良好的光热转换性能。  相似文献   

17.
近年来,ZIF-8因具有比表面积大、孔道结构规则等优点而被用作氧还原催化剂载体.以ZIF-8为载体,1,10-菲啰啉为氮源,分别以FeSO4·7 H2 O,FeAc,FeCl3·6 H2 O和FeC10 H10为铁前驱体制备阴极氧还原催化剂,考察不同铁前驱体对FeN/ZIF-8催化剂结构及性能的影响.使用X射线衍射、比表面积和孔径分布测试、透射电子显微镜、热重分析等方法对催化剂的结构、形貌及催化剂前驱体的热性质等进行表征,使用线性扫描伏安法对催化剂的氧还原活性进行测试.结果表明:以FeSO4·7H2O为铁前驱体制备的催化剂,其起始电位约为0.93 V,氧还原反应为4电子过程,具有更好的氧还原催化活性;其在制备过程中形成的适中的比表面积及孔径大小,较好的晶型结构及较均匀的颗粒分散情况,且X射线衍射结果表明催化剂中存在少量的Fe3 C,这是其具有较好的氧还原催化活性的可能原因.  相似文献   

18.
ZIF-8作为一种典型的沸石咪唑酯骨架材料,在气体储存、吸附/分离、催化和传感领域内有着广泛的应用。综述了ZIF-8的合成方法,如溶剂热法、微波合成、室温合成、微流控合成。阐述了各种合成方法的特点;分析了室温合成ZIF-8的策略;强调了微流控技术在连续、快速和可控制备ZIF-8方面的潜力。同时也简要综述了ZIF-8薄膜的制备方法,包括直接合成、二次生长法、表面功能化、特殊播种法以及逆扩散法。  相似文献   

19.
以2,6-二氨基吡啶、均苯三甲酰氯为水相和油相单体,通过界面聚合法制备吡啶功能化聚酰胺(PA-PY)膜,随后利用酰氯水解羧基和吡啶氮原子与锌离子的配位作用,在膜表面原位生长ZIF-8(类沸石咪唑酯骨架材料-8),制备了ZIF-8/聚酰胺(ZIF-8/PA-PY)双层复合纳滤膜。扫描电镜分析结果表明:原位生长法可在PA-PY分离层生成晶型结构完整、致密的ZIF-8层,且随着原位生长时间的增加,ZIF-8层逐渐增厚。ZIF-8/PA-PY双层复合纳滤膜对负电性染料的截留率较高,原位生长时间为12h时,双层复合纳滤膜对甲基蓝截留率为97.9%,刚果红为99.6%。  相似文献   

20.
采用TEM,EDS,HREM 等测试手段,对液体压力浸渗法制备的Al2O3- SiO2(sf)/ZL109复合材料的界面结构以及界面反应机理进行了观察和分析,结果表明:多晶Al2O3- SiO2纤维和基体金属在复合材料的高温制备过程中发生了化学反应,产生了尖晶石MgAl2O4;MgAl2O4沿复合材料界面呈颗粒状分布,形成了非连续分布的反应结合型界面结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号