首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 703 毫秒
1.
樊星  陈俊林  王凯  肇研 《复合材料学报》2018,35(9):2397-2404
利用纳米SiO2改性聚苯硫醚(PPS)树脂及玻璃纤维(GF)/PPS复合材料,探究纳米SiO2对PPS树脂及GF/PPS复合材料性能的影响规律。采用熔融共混工艺制备纳米SiO2/PPS树脂,并采用热压成型方法制备纳米SiO2-GF/PPS复合材料,利用SEM、DSC、DMA和力学测试表征不同纳米SiO2含量的SiO2/PPS和SiO2-GF/PPS复合材料。结果表明:纳米SiO2通过熔融共混工艺能够均匀分散在PPS基体中,并提高PPS结晶度和弯曲性能。添加1wt%纳米SiO2有效提高了GF/PPS复合材料的力学性能:层间剪切强度提高49.4%,弯曲强度提高30.6%,弯曲模量提高14.6%。纳米SiO2的添加可以提高GF/PPS复合材料的玻璃化转变温度,同时纳米SiO2能够改善树脂基体韧性并阻碍裂纹的扩展。  相似文献   

2.
为提高纳米SiO2在硅橡胶(SR)基体中的分散性及两相间的界面结合力,设计以羟基硅油(HSO)和γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)为纳米SiO2的表面封端改性剂,并将改性SiO2与双组份加成型液体SR复合得到改性纳米SiO2/SR复合材料。通过一系列表征手段对改性纳米SiO2的形貌结构及其在乙醇中的分散性等进行分析,研究了改性纳米SiO2对纳米SiO2/SR复合材料的断面形貌、力学性能及热稳定性的影响。结果表明:KH570成功接枝到纳米SiO2表面并与SR基体间形成化学键。当HSO协同KH570改性纳米SiO2时,可有效改善纳米SiO2在SR基体中的分散性能及纳米SiO2与SR两相间的界面结合性能,并显著提高纳米SiO2/SR复合材料的力学性能和热稳定性。将SiO2∶HSO∶KH570以质量比为2.0∶0.2∶0.6处理的改性纳米SiO2粒子,得到的改性纳米SiO2/SR复合材料起始热分解温度提高了230℃。当SiO2∶HSO∶KH570质量比为2.0∶0.2∶0.45时,改性纳米SiO2/SR复合材料的拉伸强度和断裂伸长率分别提高了约1倍。   相似文献   

3.
以低密度聚乙烯(LDPE)为聚合物基体,通过熔融共混的方式填充不同粒径的纳米SiO2无机颗粒,制备纳米SiO2/LDPE复合材料,研究提高聚乙烯电绝缘性能的纳米改性方法和机制。利用SEM表征纳米SiO2在LDPE基体中的微观形态和分散程度,采用DSC和偏光显微镜(PLM)分析纳米SiO2对LDPE基体结晶度和结晶形态的影响,通过热刺激电流法(TSC)分析纳米SiO2/LDPE复合材料的陷阱密度和陷阱能级,并结合电击穿的Weibull分布研究纳米复合材料的击穿机制。研究结果表明:纳米SiO2填充可以改变复合材料结晶度,进而增加LDPE基体本征结构缺陷和陷阱密度,同时填充纳米SiO2颗粒可引入比LDPE基体本征陷阱更深的陷阱能级,纳米SiO2填充颗粒引入的陷阱能级深度随着复合材料结晶度的增加而先增大后减小,填充浓度3wt%时可最有效地通过俘获载流子而抑制电击穿过程,纳米SiO2/LDPE复合材料的击穿场强达到最高值。与60 nm SiO2颗粒相比,30 nm SiO2填充颗粒具有更高的比表面积,界面电极化导致更高的介电常数,更高密度的纳米界面深陷阱态对于提高电击穿场强更有效。当填充浓度为5wt%时,纳米颗粒的团聚作用导致纳米复合材料的击穿强度降低。基于电双层理论提出了电子捕捉模型和界面结构模型,合理阐释了纳米SiO2/LDPE复合材料的微观陷阱特性及宏观电击穿机制。   相似文献   

4.
SiO2粒子经偶联剂γ-氨丙基三乙氧基硅烷(KH550)表面改性后,与木质纤维、聚氯乙烯(PVC)及其它助剂通过熔融混炼制备改性SiO2-木质纤维/PVC复合材料,用FTIR、SEM和同步热分析仪(STA)对SiO2粒子和SiO2-木质纤维/PVC复合材料的结构与性能进行测试与表征。FTIR分析表明,SiO2粒子表面接枝了KH550的特征官能团,KH550成功地接枝到SiO2粒子表面;SEM分析表明,改性纳米SiO2粒子能在木质纤维/PVC复合材料中均匀分散,其粒径在100 nm左右;添加改性的SiO2粒子后,木质纤维和PVC结合更加紧密,孔洞间隙减少。纳米SiO2质量分别占木质纤维质量的10%、8%和10%时,SiO2-木质纤维/PVC复合材料的弹性模量、拉伸强度、冲击强度分别达到最优值4.66 GPa、31.12 MPa和4.11 kJ/m2,与未添加SiO2的复合材料相比分别提高了50.29%、28.91%和16.65%。  相似文献   

5.
为了改善水性聚氨酯(WPU)耐水性差和表面性能差等缺陷,将有机硅和纳米SiO2同时引入到WPU中,首先通过自乳化法制备了WPU和有机硅改性水性聚氨酯(SWPU)。然后采用超声共混法将纳米SiO2粒子加入到SWPU中,制备了纳米SiO2/SWPU复合材料。最后,采用FTIR和SEM对WPU、SWPU和纳米SiO2/SWPU的结构进行了表征,通过接触角、吸水率及抗拉力学性能测试分析了WPU、SWPU和纳米SiO2/SWPU的疏水性能及抗拉力学性能。结果表明:纳米SiO2已被成功引入到SWPU中;纳米SiO2含量较小(≤3wt%)时能够较均匀地分散在纳米SiO2/SWPU胶膜中;当纳米SiO2含量从0增大至5wt%时,纳米SiO2/SWPU胶膜的吸水率降低了69%,拉伸强度从16.72 MPa增大至24.22 MPa,断裂伸长率从545%增至731%,表明纳米SiO2的引入显著提高了SWPU胶膜的耐水性能和力学性能。  相似文献   

6.
以熔融原位接枝的方式, 制得聚丙烯酸丁酯( PBA) 接枝改性纳米SiO2 / 聚丙烯复合材料, 并利用转矩流变、红外光谱、热重分析、X射线光电子能谱、透射电镜和动态力学分析等技术研究了原位接枝的机理以及相应复合材料的结构。结果表明: 熔融共混过程中PBA 通过化学键的形式接枝到纳米SiO2 的表面, 促使其在聚丙烯基体中得到较好的分散, 而且粒子表面的接枝聚合物分子链和基体大分子链相互缠结, 这样的结构加强了纳米粒子和基体间界面相互作用, 将有利于提高复合材料的机械性能。   相似文献   

7.
采用SiO2中空微球对含硅芳炔树脂(PSAC)进行改性,制备了SiO2/PSAC复合材料,以改善PSAC固化后质脆的缺点,提高PSAC基复合材料的力学性能,拓展PSAC在航空航天领域的应用。对SiO2/PSAC复合材料和石英纤维布增强SiO2/PSAC(QF-SiO2/PSAC)复合材料的结构与性能进行了研究,采用SEM分析SiO2/PSAC树脂浇铸体和QF-SiO2/PSAC复合材料断面微观结构,并分析SiO2的增韧机制。采用DMA和TGA分析了SiO2/PSAC复合材料耐热性能和热稳定性,虽然SiO2会导致树脂耐热性能略有下降,但其中空结构使树脂具有优异介电性能。当SiO2的添加量达2wt%时,SiO2/PSAC树脂浇铸体弯曲强度达22.3 MPa,失重5%温度为551℃,1 000℃残留率为86.5%;QF-2SiO2/PSAC复合材料的弯曲强度为298.3 MPa,弯曲模量达31.0 GPa,分别提高了27.5%、59.0%;当SiO2添加量为5wt%时,QF-5SiO2/PSAC复合材料的剪切强度提高了16.0%。   相似文献   

8.
采用硅烷偶联剂乙烯基三甲氧基硅烷(VTMO)改性石墨烯(GE),利用溶胶-凝胶法在GE表面包覆SiO2微球,得到SiO2包覆改性石墨烯(SiO2@(VTMO-GE)),以二烯丙基双酚A(BBA)和双酚A双烯丙基醚(BBE)为活性稀释剂,4,4′-二氨基二苯甲烷型双马树脂(MBMI)为单体,制备MBMI-BBA-BBE(MBAE)树脂基体;同时,以SiO2@(VTMO-GE)为增强体,采用原位聚合法制备SiO2@(VTMO-GE)/MBAE复合材料。对VTMO-GE及包覆效果进行表征和分析,研究SiO2@(VTMO-GE)增强体与SiO2@(VTMO-GE)/MBAE复合材料性能之间的关系。结果表明:VTMO成功改性GE,且SiO2微球均匀包覆在VTMO-GE表面;SiO2@(VTMO-GE)提高了SiO2@(VTMO-GE)/MBAE复合材料性能。当SiO2@(VTMO-GE)掺杂量为2.0wt%时,SiO2@(VTMO-GE)/MBAE复合材料的冲击强度和弯曲强度达到最大,分别为23.0 kJ/m2和157.4 MPa,较聚合物基体分别提高了150%和58%;在频率为102~104 Hz范围内,介电常数较为平稳,约为70.0;介电损耗约为3.7×10?3,耐热性能随SiO2@(VTMO-GE)掺杂量的增加有所提高。SiO2@(VTMO-GE)/MBAE复合材料具有优异的综合性能,为其进一步应用奠定了基础。   相似文献   

9.
以纳米粒子SiO2为核、表面活性剂N,N-十二基-N-甲基-N-(3-三甲氧基甲硅烷基丙基)氯化铵(SID3392)为颈状层、聚(乙二醇)4-壬基苯基醚3-磺丙基钾盐(PEGS)为冠状层,制备出了无溶剂纳米SiO2流体。无溶剂纳米SiO2流体为牛顿流体,在室温下具有较低的黏度,在26.5 ℃时其黏度为4.3 Pa·s,无溶剂纳米SiO2流体中SiO2的含量为13.65wt%。将该无溶剂纳米SiO2流体加入环氧树脂中,制备了无溶剂纳米SiO2流体/环氧树脂复合材料。TEM结果表明: 无溶剂纳米SiO2流体在环氧树脂基体中具有良好的分散性。DSC测试表明: 无溶剂纳米SiO2流体的加入会略微降低环氧树脂的固化温度。当纳米SiO2流体加入量为2.5wt%时,复合材料的冲击性能提高了164.7%,玻璃化温度提高了15.4 ℃。断面SEM结果显示无溶剂纳米SiO2流体能够提高环氧树脂的韧性。  相似文献   

10.
为研究玻璃纤维(GF)表面纳米SiO2改性对GF增强树脂基复合材料力学性能的影响,利用真空辅助模压(VAMP)工艺制备了不同含量的纳米SiO2表面改性GF增强聚环状对苯二甲酸丁二醇酯(PCBT)复合材料。分析了GF表面改性对GF/PCBT复合材料力学性能的影响,研究了纤维表面改性对GF/PCBT复合材料抗湿热老化性能的影响规律。纤维拔出试验结果表明:经表面处理的GF/PCBT复合材料的界面剪切强度提高了1.16倍;采用含量为0.5wt%和2wt%(与树脂质量比)的纳米SiO2处理GF表面后,复合材料的三点弯曲强度分别提高1.5倍和1.67倍,弯曲模量分别提高1.03倍和1.17倍。SEM结果显示:当纳米SiO2用量为2wt%时,破坏后的纤维表面被树脂完全覆盖,树脂与纤维粘结良好。在湿热条件下,由于纳米SiO2颗粒的存在,水分子很难通过界面相扩散到改性后的材料内部,其抗湿热性能提高。  相似文献   

11.
王逸波  焦彬如 《功能材料》2021,52(3):3140-3144
制备了环氧树脂改性沥青和掺杂纳米SiO2的环氧树脂改性沥青,研究了基体沥青、环氧树脂改性沥青、掺杂纳米SiO2的环氧树脂改性沥青的耐紫外线老化性能。采用物化指标测试、FT-IR和SEM等方法,研究了添加1%,2%和5%(质量分数)纳米SiO2对环氧树脂改性沥青耐紫外线老化性能的影响。结果表明,加入纳米SiO2后,改性沥青的软化点和粘度增加;基体沥青、PA-5%EP、PA-EP-1%SiO2、PA-EP-3%SiO2和PA-EP-5%SiO2的FT-IR光谱几乎在所有峰的位置都是相同的,改性沥青与基体沥青相比,结构没有明显变化;当加入纳米SiO2含量为5%(质量分数)时,改性沥青的粘附力显著提高,此时,纳米SiO2颗粒较为均匀地分散到基体沥青的宏观分子网络中,形成了稳定的结构;纳米SiO2的加入能很好地改善沥青的耐紫外线老化效果,PA-EP-5%SiO2样品的耐紫外线老化性能最优。  相似文献   

12.
为制备接枝聚乙烯与SiO2的复合材料,赋予其新的特殊性能,首先,通过预辐照和悬浮接枝技术制备了低密度聚乙烯接枝聚苯乙烯(LDPE-g-PS),通过表面接枝制备了PS改性纳米SiO2(PS@nano-SiO2);然后,将LDPE-g-PS与PS@nano-SiO2熔融共混,制备了PS@nano-SiO2/LDPE-g-PS复合材料;最后,利用FTIR、SEM、DSC和电子拉力机等对材料的结构及性能进行了研究。结果表明:PS已经分别接枝到LDPE和纳米SiO2上;在PS@nano-SiO2/LDPE-g-PS复合材料中,SiO2在LDPE-g-PS内达到纳米级分散,并形成独特的纤维状网络结构;2wt%PS@nano-SiO2/LDPE-g-PS复合材料的冲击强度比LDPE-g-PS提高了99.3%;与LDPE-g-PS相比,PS@nano-SiO2/LDPE-g-PS复合材料的结晶温度升高,击穿场强比LDPE的高1.4倍。所得结论表明PS@nanoSiO2/LDPE-g-PS复合材料的性能较好。  相似文献   

13.
以3,3’-二烯丙基双酚A(BBA)、双酚A双烯丙基醚(BBE)为活性稀释剂、4,4’-二氨基二苯甲烷双马来酰亚胺(MBMI)为反应单体合成聚合物基体(MBAE),以两种热塑性树脂(聚醚砜(PES)和磺化聚醚醚酮(SPEEK))为增韧剂、以溶胶-凝胶法(Sol-Gel)制备的纳米Al2O3为改性剂,制备了Al2O3-PES-SPEEK/MBAE复合材料,并采用FTIR、SEM、冲击强度、弯曲强度、弯曲模量和热失重测试的方法研究复合材料的微观形貌、力学性能和耐热性。结果表明:SPEEK中存在磺酸基团,微观结构更松散,磺化度约为41.3%;Al2O3为纳米级短纤维状晶体,表面含有活性羟基。Al2O3-PES-SPEEK/MBAE复合材料的微观形貌表明:适量的PES、SPEEK和Al2O3在基体树脂中分散均匀,断面形貌呈鱼鳞状,断裂纹不规则且发散,断裂方式为韧性断裂。力学性能测试结果显示,当PES、SPEEK及Al2O3质量分数分别为3 wt%、2 wt%和3 wt%时,Al2O3-PES-SPEEK/MBAE复合材料的弯曲强度、弯曲模量和冲击强度为172.9 MPa、4.7 GPa和21.4 kJ/m2,分别比基体树脂提高了73.1%、74.1%和125.3%,并且Al2O3-PES-SPEEK/MBAE复合材料的热分解温度为453.5℃,比基体树脂提高了15.4℃,Al2O3-PES-SPEEK/MBAE复合材料的力学性能和耐热性有较大提高。   相似文献   

14.
为研究增韧双马来酰亚胺方法及其对性能的影响,首先利用超临界乙醇处理纳米SiO2(SCE-SiO2),改善其表面活性;然后以4,4’-二氨基二苯甲烷双马来酰亚胺(MBMI)、3,3’-二烯丙基双酚A(BBA)、双酚A双烯丙基醚(BBE)为原料合成了MBMI-BBA-BBE(MBAE)复合材料基体,并利用原位聚合法和溶胶-凝胶法将SCESiO2和聚醚砜(PES)加入MBAE基体中制备了SCE-SiO2/PES-MBAE多相复合材料;最后采用SEM观察了SCESiO2/PES-MBAE复合材料断面形貌。SCE-SiO2的FTIR分析结果表明:在3 434cm-1处的Si—OH的吸收峰消失,出现了3 310cm-1处的乙醇分子间—OH的吸收峰、2 984cm-1处的甲基和亚甲基的吸收峰,证明纳米粒子可能以某种形式结合了乙醇分子,改善了表面性能。PES以"蜂窝"状分散相的形式存在于基体中,断裂方式由脆性断裂向韧性断裂转变,SCE-SiO2和PES对材料均有增韧作用,PES的增韧效果更明显,二者之间具有协同作用,当SCE-SiO2含量为2wt%、PES含量为4wt%时,多相复合材料的冲击强度和弯曲强度分别为15.02kJ/m2和130.47MPa,较MBAE树脂分别提高了57.3%和35.8%。介电性能测试表明:SCE-SiO2和PES的引入均会导致SCE-SiO2/PES-MBAE复合材料的介电常数和损耗略有上升,但二者之间的协同作用可以抑制PES组分所带来的负面影响。  相似文献   

15.
以4,4’-二氨基二苯甲烷(DDM)为固化剂、双马来酰亚胺(BMI)和酚醛环氧树脂(F51)为基体、聚醚砜(PES)为增韧剂、硅烷偶联剂KH560功能化纳米SiO2(KH-SiO2)为改性剂,采用原位聚合法制备了KH-SiO2-PES/BMI-F51复合材料,并通过非等温DSC确定了复合材料的固化工艺及固化反应动力学。根据Kissinger方程和Ozawa方程求得体系的表观活化能分别为96.03 kJ/mol和99.18 kJ/mol。FTIR测试结果表明:KH-SiO2改性效果良好,不饱和双键和环氧基特征峰消失,BMI中C=C双键和F51中环氧基在DDM作用下参与了体系的固化反应。SEM结果表明:PES树脂和KH-SiO2含量适当时,PES树脂和KH-SiO2在树脂基体中分散均匀,断裂纹不规则杂乱发展,KH-SiO2-PES/BMI-F51复合材料呈韧性断裂。力学性能测试和热失重测试表明:当PES含量为4wt%,KH-SiO2含量为1.5wt%时,KH-SiO2-PES/BMI-F51复合材料的弯曲强度、弯曲模量和冲击强度分别为156.23 MPa、4.18 GPa和20.89 kJ/m2,较BMI-F51基体分别提高了49.7%、29.4%和82.8%;KH-SiO2-PES/BMI-F51复合材料的热分解温度为393.1℃,残重率为50%时,分解温度高达523.1℃,耐热性十分优异。KH-SiO2-PES/BMI-F51复合材料的力学性能和耐热性有了较大提高,为拓展F51及BMI的应用范围提供了一定的理论数据。   相似文献   

16.
以硅烷偶联剂3-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)对纳米二氧化硅(SiO2)进行表面处理,通过分散聚合工艺分别制得SiO2-g-KH570-g-PS、SiO2-g-KH570-g-PMMA和SiO2-g-KH570-g-PAN,采用熔融共混法制备了乙烯-乙烯醇共聚物(EVOH)/纳米SiO2复合材料(5%(...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号