首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 31 毫秒
1.
B4C中B的同位素10B具有较大的热中子吸收截面,是良好的中子吸收体。采用放电等离子烧结法(SPS)制备了B4C体积分数为10%~40%的B4C/6061Al中子吸收复合材料,对B4C/6061Al中子吸收复合材料的微观组织形貌及物相组成进行了观察分析,并测试了其拉伸性能。结果表明:B4C颗粒均匀地分布在6061Al基体中,颗粒尖端放电产生的等离子体能够促进B4C颗粒/6061Al基体界面结合,材料内部的物相主要有Al、B4C、AlB2和Al3BC。随着B4C体积分数的增加,B4C/6061Al中子吸收复合材料的致密度降低,抗拉强度先增加后降低,断裂机制主要为6061Al基体及B4C颗粒/6061Al基体界面的撕裂。  相似文献   

2.
基于B4C和W良好的屏蔽中子和γ射线性能,采用6061铝合金作为基体,设计了一种新型双屏蔽(B4C-W)/6061Al层状复合材料,通过放电等离子烧结后加热轧制成板材,对制备的复合材料微观组织和力学性能进行了研究。结果表明,屏蔽组元B4C和W颗粒均匀地分布在6061Al基体中,层界面、B4C/Al、W/Al异质界面之间结合良好,无空隙和裂纹。在颗粒与基体界面处形成扩散层,扩散层的厚度约为6 μm (W/Al)和4 μm (W/Al)。轧制态的(B4C-W)/6061Al层状复合板的屈服强度(109 MPa)和极限抗拉强度(245 MPa)明显优于烧结态的复合材料,但断裂韧性降低。强度提高的原因主要是轧制后颗粒的二次分布、均匀性及界面结合强度提高,基体合金的晶粒尺寸减小,位错密度增加。层状复合板的断裂方式为基体合金的韧性断裂和颗粒的脆性断裂。   相似文献   

3.
高含量B4C (B4C≥30wt%)颗粒增强Al基(B4CP/Al)复合材料具有优异的结构和功能特性,尤其是具有优异的中子吸收性能,在核防护领域被用做屏蔽材料使用。但由于高含量B4C颗粒的加入,使B4CP/Al复合材料变形困难。采用ABAQUS数值模拟方法对不同变形量下B4CP/Al复合材料的热轧过程进行数值模拟分析,在480℃温度下对热压烧结的B4CP/Al复合材料坯料进行轧制,并对其微观组织和力学性能进行分析。数值模拟结果表明,热轧变形量达到60%以上时,B4CP/Al复合材料板材表面中间区域应力较小,侧面应力较大,在板材边缘容易产生残余应力。研究结果表明,随轧制下压量的增加,B4CP/Al复合材料中B4C颗粒分布明显均匀,位错密度增加。当轧制变形量达到70%时,B4CP/Al复合材料的屈服强度提高至249.46 MPa,极限抗拉强度提高至299.56 MPa。在拉伸过程中,B4C颗粒优先断裂,但并未与基体界面脱黏,B4C颗粒承受了主要载荷,Al基体发生塑性流动,从而提高了B4CP/Al复合材料的强度。   相似文献   

4.
基于B4C良好的中子吸收性能和碳纤维(CF)慢化中子的性能,采用真空热压烧结方法制备了集结构与功能一体具有不同CF含量的CF-B4C混合增强6061Al基复合材料,并对热轧后的组织形貌和力学性能进行分析。结果表明,大变形量热轧后B4C颗粒和CF分布较均匀,没有出现大面积的聚集现象,但是少量B4C颗粒和CF在轧制压力的作用下发生了断裂。当变形量达到60%时,复合材料的抗拉强度可达(265±3) MPa,与6061Al合金的抗拉强度相比,不同厚度的CF-B4C/Al复合材料的抗拉强度分别提高了80%和112%。随着CF含量的增加,CF-B4C/Al复合材料的强度和延伸率均减小。当CF含量达到5wt%时,断裂的主要原因是有纤维的聚集及纤维沿断裂方向排布。  相似文献   

5.
采用粉末冶金真空热压法制备了B4C质量分数为31%、平均颗粒尺寸分别为6.5 μm、9.3 μm、17.3 μm、28 μm、39.5 μm的纯Al和6061Al基体的复合材料。对复合材料进行微观结构和力学性能检测,结果表明:所有复合材料的B4C颗粒在基体中都均匀分布,且致密度都达到99%以上;对于纯Al基复合材料,随着颗粒尺寸增加,其致密度和塑性逐渐增加,强度逐渐下降;对于6061Al基复合材料,致密度随着颗粒尺寸的增加稍有降低,其强度和塑性受颗粒尺寸和热压温度共同影响,当热压温度610℃时,界面反应严重,随B4C颗粒尺寸增加,强度先下降后上升,塑性先上升后下降;当热压温度580℃时,界面反应轻微,复合材料强度逐渐下降,塑性逐渐上升。颗粒尺寸、界面反应和基体材料等均影响B4C增强铝基复合材料的力学性能。   相似文献   

6.
用真空热压法制备不同B4C颗粒尺寸(7μm、14μm、20μm)的15%B4C/Al-6.5Zn-2.8Mg-1.7Cu复合材料,研究了增强颗粒尺寸对其微观组织和力学性能的影响。结果表明,在这三种复合材料中B4C颗粒均匀分布,B4C-Al界面反应较为轻微,未见明显的界面反应产物。三种复合材料基体中沉淀相的尺寸基本相同(约为5.5 nm)。B4C颗粒的尺寸对复合材料力学性能有较大的影响。B4C颗粒尺寸为7μm的复合材料性能最佳,屈服强度为648 MPa,抗拉强度为713 MPa,延伸率为3.3%。随着颗粒尺寸的增大复合材料的强度和延伸率均降低。对三种复合材料的强化机制和断裂机制的分析结果表明:小尺寸B4C颗粒增强的复合材料强度较高,颗粒在变形过程中不易断裂,因此其塑性较好。  相似文献   

7.
采用搅拌铸造法制备了B4C/Al复合材料,利用实验分析结合第一性原理计算的方法,探讨了界面反应产物Al3BC和TiB2对B4C/Al复合材料颗粒润湿性及界面结合强度的影响机制。结果表明,界面反应产物为Al3BC时,B4C颗粒润湿性没有得到实质性改善,存在明显的颗粒团聚现象,界面结合强度较低且过度的界面反应使B4C颗粒分解损耗严重,导致B4C颗粒增强效果不明显;而通过添加Ti元素使界面反应产物为TiB2时,颗粒润湿性明显改善,B4C颗粒团聚现象显著减少,界面结合强度较高,力学性能得到显著提高。这主要是由于不同终端的Al(111)/TiB2(0001)界面黏附功均大于Al(111)/B4C(0001)的界面黏附功,表明界面反应产物TiB2可以提高B4C颗粒的润湿性,而界面反应产物Al  相似文献   

8.
(SiC,TiB2)/B4C复合材料的烧结机理   总被引:3,自引:2,他引:1       下载免费PDF全文
研究了在热压条件下制备 (SiC, TiB2)/ B4C复合材料的烧结机理。认为烧结助剂的加入使本体系成为液相烧结,同时粉料的微细颗粒对复合材料的烧结致密也有重要贡献。分析和测量了制取的复合材料的相组成、显微结构和力学性能。结果表明,采用B4C与Si3N4和少量SiC、TiC为原料,Al2O3+Y2O3为烧结助剂,在烧结温度1800~1880℃,压力30 MPa的热压条件下烧结反应生成了SiC、TiB2和少量的BN,制取了(SiC, TiB2)/B4C复合材料。所形成的晶体显微结构为层片状。制得的试样的硬度、抗弯强度和断裂韧性分别可达HRA88.6、540 MPa和5.6 MPa·m1/2。   相似文献   

9.
李玄  赵科  刘金铃 《复合材料学报》2023,40(2):1118-1128
为提高铝基材料的高温力学性能以满足其在573 K以上用于航空航天装备结构件的性能需求,采用高能球磨结合真空热压烧结工艺制备了体积分数高达20vol%的纳米Al2O3颗粒(146 nm)增强铝基复合材料,对其微观结构和高温压缩性能进行了研究。结果表明:纳米Al2O3颗粒均匀分散于超细晶铝基体中,且复合材料完全致密;该复合材料具有优异的高温压缩性能:应变速率为0.001/s时,473 K时压缩强度高达380 MPa,即使673 K时依然高达250 MPa,比其他传统铝基材料提高至少1倍;通过对其流变应力进行基于热激活的本构模型拟合可以发现,该复合材料具有高的应力指数(30)和表观激活能(204.02 kJ/mol)。这是由于高体积分数纳米颗粒能够有效钉扎晶界,并与铝基体形成热稳定的界面结合,显著提高复合材料的组织热稳定性,而且在变形过程中与晶界有效阻碍位错运动,显著提高复合材料的热变形门槛应力(在473~673 K时为190.6~328.4 MPa),其热变形过程可以由亚结构不变模型进行解释。  相似文献   

10.
高熵合金拓宽了复合材料中金属基体的选用范围。本文通过外加碳化物陶瓷颗粒,利用电弧熔炼技术制备Fe49.5Mn30Co10Cr10X0.5 (X=B4C、ZrC和TiC)等3种高熵合金复合材料,系统研究3种碳化物陶瓷颗粒对双相高熵合金基复合材料微观组织和力学性能的影响。研究结果表明:掺杂碳化物陶瓷颗粒均可细化高熵合金基体的晶粒尺寸,稳定fcc相,抑制hcp相形成,其中B4C陶瓷颗粒细化晶粒和稳定fcc相效果最显著。掺杂ZrC和B4C陶瓷颗粒样品,力学性能低于高熵合金基体样品,归因于ZrC和B4C陶瓷颗粒与基体之间的界面结合情况不佳,界面处出现孔洞性缺陷;而掺杂TiC陶瓷颗粒样品,其强韧化效果显著,归因于良好的界面结合、细晶强化、弥散强化及颗粒承载强化等。  相似文献   

11.
以B2O3、Al、石墨和B4C粉体为原料, 采用反应-热压烧结工艺在1800℃/35 MPa的烧结条件下制备了致密的碳化硼基复相陶瓷, 对复相陶瓷的显微组织、物相组成、硬度、抗弯强度以及断裂韧性进行了观察与测试, 采用7.62 mm口径的穿甲弹分别对约束状态下和自由状态下的复相陶瓷靶板进行了剩余穿深试验(DOP), 并以AZ陶瓷和B4C陶瓷为对比靶板, 根据剩余穿深结果计算了各自的防护系数。结果表明, 复相陶瓷的主要成分为B4C和Al2O3, 其中主相B4C约占70wt%, 第二相Al2O3约占30wt%, 由Al-B-O共同构成的复杂中间相填充在主相与第二相之间; 复相陶瓷的密度、硬度、抗弯强度和断裂韧性分别为2.82 g/cm3, 41.5 GPa, 380 MPa和3.9 MPa•m1/2, 其中断裂韧性比纯碳化硼陶瓷提高了85.7%; 复相陶瓷的防护系数为7.34, 比AZ陶瓷和碳化硼陶瓷分别提高了11%和70%; 在约束状态下, 各个样品的防护系数比自由状态均提高10%。  相似文献   

12.
Si3N4-BN-SiC复合材料以其良好的力学性能和抗氧化性能而具有良好的工程应用前景。本研究以Si、Si3N4稀释剂、B4C和Y2O3为原料, 采用燃烧合成法成功制备了Si3N4-BN-SiC复合材料。通过Si、B4C和N2气之间的反应, 在Si3N4陶瓷中原位引入BN和SiC, 制备的Si3N4-BN-SiC复合材料由长棒状的β-Si3N4和空心球形复合材料组成。实验研究了空心球微结构的形成机理, 结果表明, 生成的SiC、BN颗粒及玻璃相覆盖在原料颗粒上, 当原料颗粒反应完全时, 形成空心球形微结构。并进一步研究了B4C含量对Si3N4-BN-SiC复合材料力学性能的影响。原位引入SiC和BN在一定程度上可以提高复合材料的力学性能。当B4C添加量为质量分数0~20%时, 获得了抗弯强度为28~144 MPa、断裂韧性为0.6~2.3 MPa·m 1/2, 杨氏模量为17.4~54.5 GPa, 孔隙率为37.7%~51.8%的Si3N4-BN-SiC复合材料。  相似文献   

13.
本研究探讨了碳化硼原料颗粒尺寸对反应结合碳化硼复合材料相组成、结构与性能的影响。研究结果表明:颗粒级配可以使粉体堆积更加密实, 有效提高压制坯体的体积密度, 最终降低复合材料中游离Si的含量; 加入粗颗粒可减缓B4C与Si的反应, 减少SiC相的生成; 当原料中粒径为3.5、14、28、45 μm的B4C粉体按质量比为1.5 : 4 : 1.5 : 3配比时, 所制备的复合材料维氏硬度、抗弯强度、断裂韧性和体积密度分别为(29±5) GPa、(320±32) MPa、(3.9±0.2) MPa·m1/2和2.51 g/cm3。在制备复合材料过程中减缓B4C与Si反应速度、减少游离Si的含量和缩小Si区域尺寸是其性能升高的主要原因。  相似文献   

14.
In this study, B4C/6061Al nanocomposites reinforced with various volume fractions of nano‐sized B4C particles (B4C/6061Al NCs) are successfully fabricated by a powder metallurgy route consisting of spark plasma sintering (SPS) and hot extrusion and rolling (HER). The microstructure evolution, phase composition, and mechanical properties of B4C/6061Al NCs are experimentally investigate. The results show that nearly fully dense (maximum ≈99.21%) as‐SPSed NCs can be fabricated, and this can be attributed to joule heating at the particle contacts and tip spark plasma at the gaps. Nanosized B4C particles mainly distributed in the 6061Al particles boundaries and formed inhomogeneous network materials in as‐SPSed NCs, while B4C particles distributed relatively homogeneously in the 6061Al matrix after HER. No new phases are found in the B4C/6061Al NCs over three deformation stages. The pin effect of the nanosized B4C can suppress dynamic recovery and improve the driving force for dynamic recrystallization. The mechanical properties are further improved after HER, and the maximum ultimate tensile strength and yield strength for as‐rolled NCs are 305 and 168 MPa. The strengthening mechanisms mainly included load transfer strengthening, dislocation strengthening, Orowan strengthening, and fine‐grain strengthening.
  相似文献   

15.
采用盐浴镀的方法对SiC_P进行表面镀Ti处理,并通过搅拌铸造的方法制备了表面镀Ti改性SiC_P/Al2014复合材料。研究了镀Ti SiC_P的尺寸和体积分数对SiC_P/Al2014复合材料微观组织和力学性能的影响规律。结果表明:表面镀Ti处理能有效改善SiC_P在Al基体中的分散均匀性;但随着SiC_P体积分数提高,相同尺寸的镀Ti SiC_P在Al基体分散均匀性逐渐变差,当SiC_P体积分数相同时,其在Al基体中的分散均匀性随着SiC_P尺寸的增加逐渐变好。SiC_P尺寸相同时,SiC_P/Al2014复合材料的常温拉伸强度随颗粒体积分数的增加先增大后减小,SiC_P尺寸为5μm和10μm的SiC_P/Al2014复合材料抗拉强度在颗粒的体积分数为4%时达到最高,分别为524MPa和536MPa;SiC_P/Al2014复合材料的高温(493K)抗拉强度随着SiCp体积分数增加而增大,SiC_P尺寸为5μm和10μm的SiC_P/Al2014复合材料抗拉强度在颗粒体积分数为6%时达到最高,分别为308 MPa和320 MPa。  相似文献   

16.
SiCP/Al复合材料力学性能及显微结构分析   总被引:2,自引:0,他引:2  
采用粉末冶金 热挤压法制备了10%SiCP/6066Al(体积分数)复合材料.对材料拉伸性能进行了研究,并利用金相显微镜、扫描电镜和透射电镜对微观组织结构进行了观测.实验结果表明:SiC颗粒在铝基体中分布比较均匀;T6热处理条件下10%SiCp/6066Al复合材料的抗拉强度和屈服强度分别约为430.5、354.1MPa,其延伸率为5%,弹性模量为84.5GPa.加入SiC颗粒后合金基体晶粒细化同时位错密度提高,位错强化和细晶强化在SiCP/Al复合材料的强化机制中起了主要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号