首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
以尿素为沉淀剂,以乙二醇为溶剂,通过溶剂热法制备出多级前躯体Ni0.8Mn0.1Co0.1CO3,通过焙烧该前躯体和LiOH·H2O的混合物制备出高比容量的锂离子正极材料LiNi0.8Mn0.1Co0.1O2。采用XRD、FESEM及恒流充放电测试对材料的结构、形貌和电化学进行表征,结果表明,合成的产物形貌均一,有高结晶度。在0.1 C倍率下,放电比容量为194.6 mAh g-1;当放电倍率提高到2.0 C时,该材料仍然具有78.4mAhg-1的放电比容量,并且该材料在各个倍率下具有良好的稳定性。在1.0 C的放电倍率下,经过50次循环,放电容量保持率为92.5%。  相似文献   

2.
以Mn(CH_3COO)_2、Ni(CH_3COO)_2和CH_3COOLi为原料,采用流变相法制备正极材料LiNi_(0.5)Mn_(1.5)O_4,对烧结温度、时间、以及配锂量等合成条件进行了优化。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和恒流充放电仪对材料的物相、形貌和电化学性能进行了表征。结果表明,在锂源过量5%,850℃煅烧6 h合成的材料具有最好的电化学性能,以0.1 C倍率下放电比容量为127.1 m Ah/g,50次循环后,容量保持率为95.4%。  相似文献   

3.
彭涛  张海朗 《应用化工》2013,(3):421-424
采用溶胶凝胶法制备了LiNi0.7Co0.3O2。结果表明,煅烧温度为800℃、时间为12 h、Li/(Ni+Co)=1.05的正极材料LiNi0.7Co0.3O2具有α-NaFeO2型的六方晶体结构,在0.1 C下,首次充放电比容量分别为218.0 mAh/g和190.2 mAh/g,首次充放电效率为87.2%,经过20次循环仍有171.5 mAh/g,容量保持率为90.3%。  相似文献   

4.
采用不同物质的量的次亚磷酸钠对富锂正极材料进行改性处理,结果表明:采用4%(质量分数)的次亚磷酸钠改性处理的富锂正极材料表现出优异的循环稳定性,在0.5 C经过150圈循环后仍有85.3%的容量保持率,以及较高的首次Coulombic效率。材料优异的电化学性能一方面归因于次亚磷酸钠热解产生的还原性磷化氢气体与富锂正极材料表面活性氧反应产生氧空位,能够有效降低材料在首次充电过程中的不可逆容量损失;另一方面这一改性措施可以同时实现Na^(+)掺杂,起到稳定晶格结构,抑制相转变的作用,并且能够增大晶胞间距,加快锂离子扩散,降低电化学阻抗。此外,次亚磷酸钠热解所形成的焦磷酸钠包覆层可以保护正极材料,减少过渡金属溶解,从而改善材料循环性能。  相似文献   

5.
张珊  王珊  陈卫晓  高鹏  朱永明 《化工进展》2021,40(3):1506-1516
富镍氧化物正极材料因其具有高比容量、低成本、环保和无需高电压电解质的优点而备受关注。虽然Ni含量的增加有助于提高放电比容量,但也产生了阳离子混排、表界面反应和导致结构不稳定的裂纹扩展等缺点,导致富镍正极材料的循环寿命较差、热稳定性有待提升和储存性能较差,妨碍了其商业化应用。为尽可能地发挥富镍锂离子电池高容量的优势,研究人员对材料进行了多种改性,历经了离子掺杂、表面包覆、单晶材料、核壳结构、浓度梯度结构等发展阶段。本文首先对掺杂、包覆、单晶、核壳结构等几种改性手段进行了简要概述,分析了这几种方法的优势及本身固有的缺点。然后重点对浓度梯度材料进行了分析,根据其发展阶段分为富镍核加浓度梯度壳、线性浓度梯度材料、渐进式浓度梯度材料三个部分,从合成方法、改性机理及电化学性能等方面做了详细介绍。综合来看,浓度梯度材料可以从根本上解决富镍正极材料的固有缺点,相信这一技术会在富镍正极材料的实用化进程中发挥重要作用。  相似文献   

6.
富锂正极材料因具有能量密度高、电压窗口大等优点受到关注,然而首次Coulombic效率低、循环性能差等缺点阻碍了其商业化应用。采用共沉淀法并通过不同摩尔比的氯离子(Cl^(-))掺杂制备了Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2-x)Cl_(x)(x=0,0.025,0.050,0.100)富锂正极材料。通过X射线光电子能谱、原位X射线衍射和恒电流间歇滴定等技术系统研究了Cl^(-)掺杂对其电化学性能提升的调控机制。结果表明:Cl^(-)掺杂量为0.05时,该正极材料在0.2 C倍率下首次Coulombic效率由72.8%提升至81.5%,在1 C倍率下经200圈循环,容量保持率由57.9%提升至79.1%。材料优异的电化学性能归因于Cl^(-)掺杂能调控材料中O^(2-)的电化学行为,使其更多氧化为O^(n-)(n<2),抑制O_(2)的产生和逸出,减小结构的破坏。同时,由于Cl^(-)具有较大的离子半径,能扩大富锂材料的层间距,降低极化过电位,加快锂离子扩散速率,因此有效提升富锂正极材料的首次Coulombic效率和循环性能。  相似文献   

7.
以二氧化锰、氧化镍和碳酸锂为原料,采用二次焙烧工艺制备了尖晶石型镍锰酸锂(LiNi0.5Mn1.5O4)正极材料。采用X射线衍射(XRD)、扫描电镜(SEM)、交流阻抗测试(EIS)和充放电测试对LiNi0.5Mn1.5O4正极材料进行了表征。结果表明,合成的材料晶体结构完整,形貌规则,并且表现出优异的电化学性能,其0.2 C首次放电容量为134.6 mA·h/g,5 C首次放电容量为112.9 mA·h/g,5 C循环34次后容量保持率为103.3%。  相似文献   

8.
富镍正极材料(LiNi0.8Co0.1Mn0.1O2)具有高容量的优点,是锂离子电池正极材料最有潜力的材料之一。为确定最佳合成条件,本工作研究了合成温度对材料性能的影响,并详细分析了材料电化学性能衰减的原因以及循环过程中材料结构的变化。采用热重/差示扫描量热法(TG/DSC)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(HRTEM)、能谱仪(EDS)、X射线光电子能谱(XPS)等手段对合成的正极材料进行了物化表征,并对其电化学性能进行测试。结果表明,在低温段500℃保温4 h,高温段750℃保温14 h合成的正极材料NCM750在0.2 C首次放电比容量为186.2 mAh/g,首次充放电效率为82.5%,1 C放电比容量为185.1 mAh/g,100次循环后仍有175.2 mAh/g,容量保持率为95.2%。在此条件下合成的材料具有结构稳定,粒径均匀,电化学性能优异等优点,本工作对富镍正极材料的合成及结构变化进行研究,有助于加深对材料的了解。  相似文献   

9.
低共熔混合锂盐合成LiNi_(0.8)Co_(0.2)O_2的研究   总被引:1,自引:0,他引:1  
常照荣  齐霞  吴锋  汤宏  孙东 《应用化工》2005,34(9):535-538
在空气气氛中,采用低共熔混合物L iNO3-L iOH为锂盐,制备出了锂离子电池正极材料L iN i0.8Co0.2O2。XRD分析表明:此工艺制得的正极材料具有完整的层状结构。电性能测试表明:在0.5 mA/cm2的充放电电流密度和2.7~4.2 V的电压范围内,L iN i0.8Co0.2O2首次放电比容量为145.2 mA.h/g,充放电库仑效率为83.8%;循环20次后,放电比容量为124.8 mA.h/g。该方法能制备出电化学性能良好的L iN i0.8Co0.2O2正极材料。  相似文献   

10.
采用高分子网络法制备锂离子电池LiNi_(0.5)Mn_(1.5)O_4正极材料,利用XRD,SEM及电化学测试对其进行表征,研究了煅烧温度对LiNi_(0.5)Mn_(1.5)O_4的微观结构,形貌及其电化学性能的影响。研究结果表明,采用高分子网络法制备的LiNi_(0.5)Mn_(1.5)O_4材料颗粒小,粒度分布均匀,850度煅烧制得的LiNi_(0.5)Mn_(1.5)O_4电化学性能最好,大倍率3C放电循环20次比容量保持率为97.8%。  相似文献   

11.
通过表面包覆对锂离子电池正极材料-镍钴锰三元材料进行改性,提高其结构稳定性和界面稳定性。采用导电聚合物聚并苯(PAS)和金属氧化物Al2O3对KCl掺杂改性的LiNi0.5Co0.2Mn0.3O2(NCM523)进行双层包覆改性,以进一步提高其综合性能。通过XRD、SEM、TEM分析及电化学性能测试表明,包覆没有改变材料结构,包覆层改善了材料界面的电导率,阻止了电极活性材料表面的副反应,有利于提高锂离子电池的大倍率性能。  相似文献   

12.
采用高温固相法合成锂离子电池富镍三元材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2,对其工艺条件进行优化,对产物进行X射线衍射(XRD),扫描电镜(SEM)以及电化学性能分析。结果表明:在氧气气氛下,锂与金属元素摩尔比为1.05:1、烧结时间15 h、烧结温度750℃为最佳合成工艺条件。按最佳工艺合成的样品在1C首次放电容量高达174.9mA·h·g~(-1),50次循环后比容量为158.5 mA·h·g~(-1),容量保持率为90.62%,表现出良好的循环稳定性。XRD和SEM表征表明,在氧气气氛下烧结的样品有良好的层状结构,阳离子混排程度小,具有较好的类球形,粒径均匀分布在10~20μm。循环伏安(CV)和电化学阻抗(EIS)结果表明,工艺条件的优化有助于提高正极材料的电化学性能。  相似文献   

13.
《应用化工》2017,(1):10-13
研究了甲基磷酸二甲酯(DMMP)含量对1 mol/L Li PF6/EC∶DEC∶EMC(1∶1∶1)电解液的电化学稳定性、热稳定性及电导率的影响,并首次将含DMMP的阻燃电解液应用于高压材料LiNi_(0.5)Mn_(1.5)O_4中。结果表明,加入DMMP添加剂后电解液的热稳定性得到提高,但是该添加剂电解液的电导率有所降低。研究了DMMP对LiNi_(0.5)Mn_(1.5)O_4扣式电池的电化学性能的影响,循环伏安测试表明,几乎不影响电解液在高压条件下的使用,充放电测试结果表明,DMMP的使用会降低电池的循环性能,当DMMP含量为5%时,对电池的循环性能影响较小。此外,交流阻抗(EIS)分析表明,DMMP对循环性能影响的主要原因是内阻随着循环的增加而增大。  相似文献   

14.
《应用化工》2022,(1):10-14
研究了甲基磷酸二甲酯(DMMP)含量对1 mol/L Li PF6/EC∶DEC∶EMC(1∶1∶1)电解液的电化学稳定性、热稳定性及电导率的影响,并首次将含DMMP的阻燃电解液应用于高压材料LiNi_(0.5)Mn_(1.5)O_4中。结果表明,加入DMMP添加剂后电解液的热稳定性得到提高,但是该添加剂电解液的电导率有所降低。研究了DMMP对LiNi_(0.5)Mn_(1.5)O_4扣式电池的电化学性能的影响,循环伏安测试表明,几乎不影响电解液在高压条件下的使用,充放电测试结果表明,DMMP的使用会降低电池的循环性能,当DMMP含量为5%时,对电池的循环性能影响较小。此外,交流阻抗(EIS)分析表明,DMMP对循环性能影响的主要原因是内阻随着循环的增加而增大。  相似文献   

15.
高镍三元正极材料表面形成的碱性物质容易导致电池容量衰减加快、寿命缩短,因而调控三元材料表面碱性物质对于提高锂离子二次电池的功能和安全性至关重要。综述了高镍锂离子电池三元正极材料表面碱性物质的形成机理及处理手段,从不同角度阐述了环境中的水、二氧化碳对表面碱性物质形成的影响。探讨了表面碱性物质形成过程中,由于锂离子和过渡金属的迁移与固化引发的表面结构的相变现象,造成了三元正极材料的加工储存性能的恶化。还对降碱工艺中的洗涤、干燥、低温烧结等过程进行了重点说明,阐述了洗涤工艺对三元材料表面碱性物质降低及对材料性质的影响,指出需选择合适的洗涤、干燥条件,减小材料表面发生的变异。最后结合目前降碱工艺对后续研究方向提出了建议。  相似文献   

16.
基于水热/溶剂热法制备LiNi0.8Co0.1Mn0.1O2电极材料,以镍、钴、锰乙酸盐为原料,以六亚甲基四胺为沉淀剂、水或乙醇为溶剂,通过调节溶剂组分控制Ni0.8Co0.1Mn0.1(OH)2(NCM)的成核与生长速率,从而合成两种形貌不同的Ni0.8Co0.1Mn0.1(OH)2前驱体,再经过混锂煅烧获得LiNi0.8Co0.1Mn0.1O2正极材料,研究比较了其电化学性能。以水为溶剂通过水热法合成的前驱体样品呈现出由一次片状颗粒紧密堆积组成的长方体状二次颗粒形貌,经混锂煅烧得到的产物表现出较高的放电比容量,在0.5C倍率下首次放电比容量可达到189.70 mA·h/g,循环200次容量保持率为69.72%。以乙醇为溶剂通过溶剂热法合成得到球形二次颗粒前驱体,最终得到的产物具有多孔球形结构,表现出了优异的循环性能,0.5C首次放电比容量为178.65 mA·h/g,循环200次容量保持率仍高达94.55%。  相似文献   

17.
层状锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2的制备及性能   总被引:2,自引:0,他引:2  
采用共沉淀法得到前驱体Ni0.8Co0.1Mn0.1(OH)2,利用前驱体与LiOH×H2O的高温固相反应得到高振实密度的锂离子电池层状正极材料LiNi0.8Co0.1Mn0.1O2 (2.3~2.5 g/cm3). 初步探讨了合成条件对材料电化学性能的影响. 通过X射线衍射(XRD)、扫描电镜(SEM)、热重-差热分析(TG/DTG)以及恒电流充放电测试对合成的样品进行了测试和表征. 结果表明,在750℃、氧气气氛下合成的材料具有较好的电化学性能. 通过XRD分析可知该材料为典型的六方晶系a-NaFeO2结构;SEM测试发现产物粒子是由500~800 nm的一次小晶粒堆积形成的二次类球形粒子. 电化学测试表明,其首次放电容量和库仑效率分别为168.6 mA×h/g和90.5%, 20次循环后容量为161.7 mA×h/g,保持率达到95.9%,是一种具有应用前景的新型锂离子电池正极材料.  相似文献   

18.
便携式电子设备在人类社会中发挥着越来越重要的作用,对高能量密度的电池的研发和性能研究更加迫切。层状富镍三元材料作为具有较高应用前景的高能量密度锂离子电池正极材料受到诸多关注。本文从富镍三元正极材料的结构和协同机理两方面介绍了电极材料的性质,从其失效机理着手介绍了其存在的相关问题,从材料的改性和结构调控等方面介绍富镍三元正极材料的研究进展。最后在此基础上对未来富镍三元正极材料的研究及其应用发展做出展望。  相似文献   

19.
采用湿法融合技术及高温固相法合成Li_3VO_4包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2正极材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等方法研究材料的结晶相、形貌、微观结构。研究表明,Li_3VO_4均匀地包覆在Li Ni0.8Co0.1Mn0.1O_2表面,未改变原材料的材料结构和形貌,包覆层厚度为1~2 nm。不同含量的Li_3VO_4对LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2正极材料进行修饰研究表明,3%(质量)Li_3VO_4包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2在1 C下100次循环后容量保持率为94.13%,具有最佳的倍率性能和循环性能。此外,循环伏安(CV)和交流阻抗(EIS)分析表明,Li_3VO_4能提高Li+电导率,抑制活性材料与电解液之间的副反应,提高材料的电化学性能。  相似文献   

20.
杨威  张海朗 《应用化工》2013,(10):1792-1796
采用溶胶-凝胶法合成了层状正极材料LiNi0.4Co0.2Mn0.4O2,XRD、SEM、EDS和电化学性能测试表明,850℃为最佳煅烧温度,在此温度下合成的材料具有ɑ-NaFeO2层状结构,结晶度最好,Ni、Co、Mn分布均匀。充放电测试在2.0~4.6 V,0.2 C的电流下,材料首次放电比容量为185.6 mAh/g,库伦效率为93.2%;经40次循环后,容量保持率为92.5%,且该材料具有优良的倍率性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号