首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 140 毫秒
1.
基于B4C和W良好的屏蔽中子和γ射线性能,采用6061铝合金作为基体,设计了一种新型双屏蔽(B4C-W)/6061Al层状复合材料,通过放电等离子烧结后加热轧制成板材,对制备的复合材料微观组织和力学性能进行了研究。结果表明,屏蔽组元B4C和W颗粒均匀地分布在6061Al基体中,层界面、B4C/Al、W/Al异质界面之间结合良好,无空隙和裂纹。在颗粒与基体界面处形成扩散层,扩散层的厚度约为6 μm (W/Al)和4 μm (W/Al)。轧制态的(B4C-W)/6061Al层状复合板的屈服强度(109 MPa)和极限抗拉强度(245 MPa)明显优于烧结态的复合材料,但断裂韧性降低。强度提高的原因主要是轧制后颗粒的二次分布、均匀性及界面结合强度提高,基体合金的晶粒尺寸减小,位错密度增加。层状复合板的断裂方式为基体合金的韧性断裂和颗粒的脆性断裂。   相似文献   

2.
基于B4C良好的中子吸收性能和碳纤维(CF)慢化中子的性能,采用真空热压烧结方法制备了集结构与功能一体具有不同CF含量的CF-B4C混合增强6061Al基复合材料,并对热轧后的组织形貌和力学性能进行分析。结果表明,大变形量热轧后B4C颗粒和CF分布较均匀,没有出现大面积的聚集现象,但是少量B4C颗粒和CF在轧制压力的作用下发生了断裂。当变形量达到60%时,复合材料的抗拉强度可达(265±3) MPa,与6061Al合金的抗拉强度相比,不同厚度的CF-B4C/Al复合材料的抗拉强度分别提高了80%和112%。随着CF含量的增加,CF-B4C/Al复合材料的强度和延伸率均减小。当CF含量达到5wt%时,断裂的主要原因是有纤维的聚集及纤维沿断裂方向排布。  相似文献   

3.
刘瑞峰  王文先  赵威 《复合材料学报》2021,38(10):3394-3401
采用先进粉末冶金技术(放电等离子烧结+热挤压)制备了三种体积分数(3vol%、5vol%、7vol%)的微/纳B4C增强6061Al复合材料,对不同制备阶段复合材料的微观组织(SEM、TEM、EBSD)进行观察分析,对复合材料的纳米压痕行为及拉伸性能进行测试。结果表明:烧结后B4C颗粒在基体中呈“网状”分布;挤压变形后B4C颗粒在基体实现弥散均匀分布。挤压变形后,纳米B4C在晶内及晶界均有分布,纳米B4C对位错的钉扎作用使得基体积累大量位错,提供驱动力并越过动态回复,使内部再结晶比例高达74%。当B4C体积分数为3vol%时,挤压态B4C/6061Al复合材料的抗拉强度、屈服强度及延伸率为219 MPa、88 MPa和22.5%,断裂形貌中呈现大量韧窝。   相似文献   

4.
B4C中B的同位素10B具有较大的热中子吸收截面,是良好的中子吸收体。采用放电等离子烧结法(SPS)制备了B4C体积分数为10%~40%的B4C/6061Al中子吸收复合材料,对B4C/6061Al中子吸收复合材料的微观组织形貌及物相组成进行了观察分析,并测试了其拉伸性能。结果表明:B4C颗粒均匀地分布在6061Al基体中,颗粒尖端放电产生的等离子体能够促进B4C颗粒/6061Al基体界面结合,材料内部的物相主要有Al、B4C、AlB2和Al3BC。随着B4C体积分数的增加,B4C/6061Al中子吸收复合材料的致密度降低,抗拉强度先增加后降低,断裂机制主要为6061Al基体及B4C颗粒/6061Al基体界面的撕裂。  相似文献   

5.
采用搅拌铸造法制备了B4C/Al复合材料,利用实验分析结合第一性原理计算的方法,探讨了界面反应产物Al3BC和TiB2对B4C/Al复合材料颗粒润湿性及界面结合强度的影响机制。结果表明,界面反应产物为Al3BC时,B4C颗粒润湿性没有得到实质性改善,存在明显的颗粒团聚现象,界面结合强度较低且过度的界面反应使B4C颗粒分解损耗严重,导致B4C颗粒增强效果不明显;而通过添加Ti元素使界面反应产物为TiB2时,颗粒润湿性明显改善,B4C颗粒团聚现象显著减少,界面结合强度较高,力学性能得到显著提高。这主要是由于不同终端的Al(111)/TiB2(0001)界面黏附功均大于Al(111)/B4C(0001)的界面黏附功,表明界面反应产物TiB2可以提高B4C颗粒的润湿性,而界面反应产物Al  相似文献   

6.
纯镁对碳化硼颗粒的常压浸渗   总被引:4,自引:0,他引:4       下载免费PDF全文
本文研究了纯镁对不同致密度的碳化硼(B4C)颗粒基片的常压浸渗性;讨论了镁液对B4C颗粒聚集体常压浸渗的影响因素;提出了浸渗模型。研究表明,纯镁在氩气保护下,800~850℃温度范围保温30min即可浸渗B4C颗粒聚集体。浸渗深度和宽度随加热温度升高和保温时间延长而增加;常压浸渗的B4CP/Mg复合材料具有很高的硬度,B4C颗粒在基体中分布较均匀。   相似文献   

7.
用真空热压法制备不同B4C颗粒尺寸(7μm、14μm、20μm)的15%B4C/Al-6.5Zn-2.8Mg-1.7Cu复合材料,研究了增强颗粒尺寸对其微观组织和力学性能的影响。结果表明,在这三种复合材料中B4C颗粒均匀分布,B4C-Al界面反应较为轻微,未见明显的界面反应产物。三种复合材料基体中沉淀相的尺寸基本相同(约为5.5 nm)。B4C颗粒的尺寸对复合材料力学性能有较大的影响。B4C颗粒尺寸为7μm的复合材料性能最佳,屈服强度为648 MPa,抗拉强度为713 MPa,延伸率为3.3%。随着颗粒尺寸的增大复合材料的强度和延伸率均降低。对三种复合材料的强化机制和断裂机制的分析结果表明:小尺寸B4C颗粒增强的复合材料强度较高,颗粒在变形过程中不易断裂,因此其塑性较好。  相似文献   

8.
采用粉末冶金真空热压法制备了B4C质量分数为31%、平均颗粒尺寸分别为6.5 μm、9.3 μm、17.3 μm、28 μm、39.5 μm的纯Al和6061Al基体的复合材料。对复合材料进行微观结构和力学性能检测,结果表明:所有复合材料的B4C颗粒在基体中都均匀分布,且致密度都达到99%以上;对于纯Al基复合材料,随着颗粒尺寸增加,其致密度和塑性逐渐增加,强度逐渐下降;对于6061Al基复合材料,致密度随着颗粒尺寸的增加稍有降低,其强度和塑性受颗粒尺寸和热压温度共同影响,当热压温度610℃时,界面反应严重,随B4C颗粒尺寸增加,强度先下降后上升,塑性先上升后下降;当热压温度580℃时,界面反应轻微,复合材料强度逐渐下降,塑性逐渐上升。颗粒尺寸、界面反应和基体材料等均影响B4C增强铝基复合材料的力学性能。   相似文献   

9.
Si3N4-BN-SiC复合材料以其良好的力学性能和抗氧化性能而具有良好的工程应用前景。本研究以Si、Si3N4稀释剂、B4C和Y2O3为原料, 采用燃烧合成法成功制备了Si3N4-BN-SiC复合材料。通过Si、B4C和N2气之间的反应, 在Si3N4陶瓷中原位引入BN和SiC, 制备的Si3N4-BN-SiC复合材料由长棒状的β-Si3N4和空心球形复合材料组成。实验研究了空心球微结构的形成机理, 结果表明, 生成的SiC、BN颗粒及玻璃相覆盖在原料颗粒上, 当原料颗粒反应完全时, 形成空心球形微结构。并进一步研究了B4C含量对Si3N4-BN-SiC复合材料力学性能的影响。原位引入SiC和BN在一定程度上可以提高复合材料的力学性能。当B4C添加量为质量分数0~20%时, 获得了抗弯强度为28~144 MPa、断裂韧性为0.6~2.3 MPa·m 1/2, 杨氏模量为17.4~54.5 GPa, 孔隙率为37.7%~51.8%的Si3N4-BN-SiC复合材料。  相似文献   

10.
高熵合金拓宽了复合材料中金属基体的选用范围。本文通过外加碳化物陶瓷颗粒,利用电弧熔炼技术制备Fe49.5Mn30Co10Cr10X0.5 (X=B4C、ZrC和TiC)等3种高熵合金复合材料,系统研究3种碳化物陶瓷颗粒对双相高熵合金基复合材料微观组织和力学性能的影响。研究结果表明:掺杂碳化物陶瓷颗粒均可细化高熵合金基体的晶粒尺寸,稳定fcc相,抑制hcp相形成,其中B4C陶瓷颗粒细化晶粒和稳定fcc相效果最显著。掺杂ZrC和B4C陶瓷颗粒样品,力学性能低于高熵合金基体样品,归因于ZrC和B4C陶瓷颗粒与基体之间的界面结合情况不佳,界面处出现孔洞性缺陷;而掺杂TiC陶瓷颗粒样品,其强韧化效果显著,归因于良好的界面结合、细晶强化、弥散强化及颗粒承载强化等。  相似文献   

11.
以B2O3、Al、石墨和B4C粉体为原料, 采用反应-热压烧结工艺在1800℃/35 MPa的烧结条件下制备了致密的碳化硼基复相陶瓷, 对复相陶瓷的显微组织、物相组成、硬度、抗弯强度以及断裂韧性进行了观察与测试, 采用7.62 mm口径的穿甲弹分别对约束状态下和自由状态下的复相陶瓷靶板进行了剩余穿深试验(DOP), 并以AZ陶瓷和B4C陶瓷为对比靶板, 根据剩余穿深结果计算了各自的防护系数。结果表明, 复相陶瓷的主要成分为B4C和Al2O3, 其中主相B4C约占70wt%, 第二相Al2O3约占30wt%, 由Al-B-O共同构成的复杂中间相填充在主相与第二相之间; 复相陶瓷的密度、硬度、抗弯强度和断裂韧性分别为2.82 g/cm3, 41.5 GPa, 380 MPa和3.9 MPa•m1/2, 其中断裂韧性比纯碳化硼陶瓷提高了85.7%; 复相陶瓷的防护系数为7.34, 比AZ陶瓷和碳化硼陶瓷分别提高了11%和70%; 在约束状态下, 各个样品的防护系数比自由状态均提高10%。  相似文献   

12.
以Ti、B_4C和SiC晶须(SiC_w)为原料,采用自蔓延高温合成法制备了多孔TiB__2-TiC复合材料。讨论了SiC_w含量对TiB__2-TiC复合材料物相、组织形貌、孔隙率和抗压强度的影响。结果表明:不添加SiC_w时,复合材料中主要物相为贫硼相TiB和Ti_3B_4以及TiC和少量TiB__2;在5Ti+B_4C体系中加入SiC_w后,贫硼相TiB和Ti_3B_4逐渐减少直至消失,而出现富硼相TiB__2和TiC的含量增加。随着SiC_w含量的增加,复合材料的孔隙率逐渐增加,由38.46%增加至5_2.78%。当SiC_w含量小于1.0时,随着SiC_w含量的增加,多孔TiB_2-TiC复合材料的抗压强度明显增加,当SiC_w含量为1.0时,复合材料的抗压强度达到最大值56.04MPa。Ti与SiC_w反应会生成TiC、Ti_3SiC_2和TiSi_2等物相,消耗一定量的Ti,使得与B4C反应的Ti量减少,从而促进富硼相TiB_2形成和TiC的增多。并且在SiC_w表面形成颗粒状TiC或者层片状Ti_3SiC_2,增加SiC_w与TiB_2-TiC基体之间的结合,更有利于发挥SiC_w的强化作用。  相似文献   

13.
The effects of the ceramic particle material on the flexural Weibull modulus, characteristic flexural strength, and damage parameters of particulate-reinforced metal-matrix composites were studied. Three high volume fill composites were fabricated using the pressure infusion casting technique: they were reinforced with SiC, B4C, and -Al2O3 particles. Four-point bend testing determined the effects of particle material on flexural strength and elastic modulus. It was found the B4C and SiC composites had similar flexural Weibull modulus, low deflection, and similar damage parameters. The -Al2O3 reinforced composite had the largest flexural Weibull modulus, highest deflection at failure, and largest damage parameter. Extensive microstructural and SEM fractographs were taken of the as-processes and fractured specimens. The mechanisms leading to the dominant failure modes are discussed.  相似文献   

14.
李玄  赵科  刘金铃 《复合材料学报》2023,40(2):1118-1128
为提高铝基材料的高温力学性能以满足其在573 K以上用于航空航天装备结构件的性能需求,采用高能球磨结合真空热压烧结工艺制备了体积分数高达20vol%的纳米Al2O3颗粒(146 nm)增强铝基复合材料,对其微观结构和高温压缩性能进行了研究。结果表明:纳米Al2O3颗粒均匀分散于超细晶铝基体中,且复合材料完全致密;该复合材料具有优异的高温压缩性能:应变速率为0.001/s时,473 K时压缩强度高达380 MPa,即使673 K时依然高达250 MPa,比其他传统铝基材料提高至少1倍;通过对其流变应力进行基于热激活的本构模型拟合可以发现,该复合材料具有高的应力指数(30)和表观激活能(204.02 kJ/mol)。这是由于高体积分数纳米颗粒能够有效钉扎晶界,并与铝基体形成热稳定的界面结合,显著提高复合材料的组织热稳定性,而且在变形过程中与晶界有效阻碍位错运动,显著提高复合材料的热变形门槛应力(在473~673 K时为190.6~328.4 MPa),其热变形过程可以由亚结构不变模型进行解释。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号