首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some quality control schemes have been developed when several related quality characteristics are to be monitored: simultaneous X¯ charts, Hotelling's T2 chart, multivariate CUSUM and multivariate EWMA. Hotelling's T2 control chart has the advantage of its simplicity but it is slow in detecting small process shifts. The latest developments in variable sample sizes for univariate control charts are applied in this paper to define an adaptive sample sizes T2 control chart. As occurs in the univariate case the ARL improvements are very important particularly for small process shifts. An example is given to illustrate the use of the proposed scheme.  相似文献   

2.
The average run length (ARL) is usually used as a sole measure of performance of a multivariate control chart. The Hotelling's T2, multivariate exponentially weighted moving average (MEWMA) and multivariate cumulative sum (MCUSUM) charts are commonly optimally designed based on the ARL. Similar to the case of univariate quality control, in multivariate quality control, the shape of the run length distribution changes in accordance to the magnitude of the shift in the mean vector, from highly skewed when the process is in‐control to nearly symmetric for large shifts. Because the shape of the run length distribution changes with the magnitude of the shift in the mean vector, the median run length (MRL) provides additional and more meaningful information about the in‐control and out‐of‐control performances of multivariate charts, not given by the ARL. This paper provides a procedure for optimal designs of the multivariate synthetic T2 chart for the process mean, based on MRL, for both the zero and steady‐state modes. Two Mathematica programs, each for the zero state and steady‐state modes are given for a quick computation of the optimal parameters of the synthetic T2 chart, designed based on MRL. These optimal parameters are provided in the paper, for the bivariate case with sample sizes, nin{4, 7, 10}. The MRL performances of the synthetic T2, MEWMA and Hotelling's T2 charts are also compared. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Similar to the univariate CUSUM chart, a multivariate CUSUM (MCUSUM) chart can be designed to detect a particular size of the mean shift optimally based on the scheme of a sequential likelihood ratio test for the noncentrality parameter. However, in multivariate case, the probability ratio of a sequential test is intractable mathematically and the test statistic based on the ratio does not have a closed form expression which makes it impractical for real application. We drive an approximate log-likelihood ratio and propose a multivariate statistical process control chart based on a sequential χ2 test to detect a change in the noncentrality parameter. The statistical properties of the proposed test statistic are explored. The average runs length (ARL) performance of the proposed charts is compared with other MCUSUM charts for process mean monitoring. The experimental results reveal that the proposed charts achieve superior, both zero-state and steady-state, ARL performance over a wide range of mean shifts, especially when the dimension of measurements is large.  相似文献   

4.
Autocorrelation or nonstationarity may seriously impact the performance of conventional Hotelling's T2 charts. We suggest modeling processes with multivariate autoregressive integrated moving average time series models and propose two model‐based monitoring charts. One monitors the predicted value and provides information about the need for mean adjustments. The other is a Hotelling's T2 control chart applied to the residuals. The average run length performance of the residual‐based Hotelling's T2 chart is compared with the observed data‐based Hotelling's T2 chart for a group of first‐order vector autoregressive models. We show that the new chart in most cases performs well. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Most multivariate control charts in the literature are designed to detect either mean or variation shifts rather than both. A simultaneous use of the Hotelling T 2 and |S| control charts has been proposed but the Hotelling T 2 reacts to mean shifts, dispersion changes, and changes of correlations among responses. The combination of two multivariate control charts into one chart sometimes loses the ability to provide detailed diagnostic information when a process is out-of-control. In this research a new multivariate control chart procedure based on exponentially weighted moving average (EWMA) statistics is proposed to monitor process mean and variance simultaneously to identify proper sources of variations. Two multivariate EWMA control charts using individual observations are proposed to achieve a quick detection of mean or variance shifts or both. Simulation studies show that the proposed charts are capable of identifying appropriate types of shifts in terms of correct detection percentages. A manufacturing example is used to demonstrate how the proposed charts can be properly set-up based on average run length values via simulations. In addition, correct detection rates of the proposed charts are explored.  相似文献   

6.
Beta-distributed process outputs are common in manufacturing industry because they range from 0 to 1 based on inputs like yield. Under the normality assumption, Shewarts control charts and Hotelling's control charts based on the deviance residual have been applied to monitor the process mean of the beta-distributed process outputs. The normality assumption can be violated according to the shape of the beta distribution. Therefore, without the normality assumption, we propose antirank control charts, exponentially weighted moving average (EWMA) control charts and cumulative sum (CUSUM) control charts. The proposed control charts outperform the existing control charts in the experimental results. The previous research has been focused on monitoring the process mean only. For the first time, in order to monitor the process variance of the beta-distributed process outputs, we propose the multivariate exponentially weighted mean squared deviation (MEWMS) chart, the first norm distance of the MEWMS deviation from its expected value (MEWMSL1) chart, the chart based on MEWMS deviation with the approximated distribution of trace (MEWMSAT), the multivariate trace sum squared deviation (MTSSD) chart and the multivariate matrix sum squared deviation (MMSSD) chart based on the deviance residual. The proposed control charts are compared and recommended in terms of the experimental results. This research can be a guideline for practitioners who monitor the deviance residual.  相似文献   

7.
The variable-dimension T2 control chart (VDT2 chart) was recently proposed for monitoring the mean of multivariate processes in which some of the quality variables are easy and inexpensive to measure while other variables require substantially more effort or expense. The chart requires most of the times that only the inexpensive variables be sampled, switching to sampling all the variables only when a warning is triggered. It has good ARL performance compared with the standard T2 chart, while significantly reducing the sampling cost. However, like the T2 chart, it has limited sensitivity to small and moderate mean shifts. To detect such shifts faster, we developed an exponentially weighted moving average (EWMA) version of the VDT2 chart, along with Markov chain models for ARL calculation, and software (made available) for optimizing the chart design. The optimization software, which is based on genetic algorithms, runs in Windows© and has a friendly user interface. The performance analysis shows the great gain in performance achieved by the incorporation of the EWMA procedure.  相似文献   

8.
Multivariate multiple sampling charts   总被引:1,自引:0,他引:1  
A new multivariate statistical process control scheme, the Multivariate Multiple Sampling (MMS) control chart scheme, is proposed in this paper. A MMS chart is a multivariate extension of a double sampling X-bar control chart with at least two sampling stages. In the paper, a statistical design optimization procedure to design the MMS chart is presented and the performance of the MMS chart is investigated. The statistical efficiency in terms of average run length of the MMS chart is compared with that of the Hotelling chart both with and without variable sampling schemes, a multivariate CUMulative SUM (CUSUM) chart, and a multivariate Exponentially Weighted Moving Average (EWMA) chart. The ability of the MMS chart to handle the worst-case scenario is also investigated and compared with that of the multivariate EWMA and CUSUM charts. The results of the investigation show that even with only two sampling stages, the MMS chart provides an improvement in efficiency in detecting small shifts over the Hotelling chart without variable sampling schemes. When the number of sampling stages is equal to two, the MMS chart is better in detecting large shifts and the multivariate EWMA and CUSUM charts are better in detecting relatively small shifts. As the number of sampling stages is increased beyond two, the improvement in sensitivity of the MMS chart in detecting the small shifts increases. When the number of sampling stages ≥3, the MMS chart begins to give a better performance than a Hotelling chart with a variable sampling scheme for small shifts and is also better than a multivariate EWMA chart for both small and large shifts. As the number of sampling stages ≥4, the MMS chart begins to give a better performance than a multivariate CUSUM chart for both small and large shifts. The results of the investigation also show that the MMS chart outperforms the multivariate EWMA and CUSUM charts in the worst-case scenario situation.  相似文献   

9.
It is customary to increase the sensitivity of a control chart using an efficient estimator of the underlying process parameter which is being monitored. In this paper, using an auxiliary information-based (AIB) mean estimator, we propose dual multivariate CUSUM (DMCUSUM) and mixed DMCUSUM (MDMCUSUM) charts, called the AIB-DMCUSUM and AIB-MDMCUSUM charts, with and without fast initial response features for monitoring the mean vector of a multivariate normally distributed process. The DMCUSUM chart combines two similar-type multivariate CUSUM (MCUSUM) charts while the MDMCUSUM chart combines two different-type MCUSUM charts, into a single chart. The objective of two multivariate subcharts in the DMCUSUM/MDMCUSUM chart is to simultaneously detect small-to-moderate and moderate-to-large shifts in the process mean vector. Monte Carlo simulations are used to compute the run length characteristics, including the average run length (ARL), extra quadratic loss, and integral of the relative ARL. Based on detailed run length comparisons, it turns out that the AIB-DMCUSUM and AIB-MDMCUSUM charts uniformly and substantially outperform the DMCUSUM and MDMCUSUM charts when detecting different sizes of shift in the process mean vector. A real dataset is used to explain the implementation of proposed AIB multivariate charts.  相似文献   

10.
Two alternatives to the multivariate exponentially weighted moving average (EWMA) chart are considered. One of these alternatives is an arithmetic moving average control chart which is the arithmetic average of the sample means for the last k periods. The other alternative is a truncated version of the EWMA which truncates the EWMA after a fairly short period of time so that more emphasis is placed on the most current observation. Simulated average run length (ARL) results indicate that for some situations these alternatives charts outperform the multivariate EWMA chart. Some suggestions are made for designing charts to detect a specific shift and comparing the alternative charts. Some authors have noted that past in-control data may diminish the chart's ability to detect a shift in the process mean. To examine this, the scenario will be discussed when the process is in-control initially but goes out-of-control at some random time period. This is more like a realistic manufacturing setting, where the process is in-control initially, but after some time the process mean shifts to a new mean and in this paper it will be shown which control charts detect a shift faster using this scenario.  相似文献   

11.
In this paper, we present a new chart called a likelihood ratio based double exponentially weighted moving average (LR_DEWMA) chart to monitor the shape parameter of the inflated Pareto process. Three other control charts such as the Shewhart type, the classical cumulative sum (CUSUM), and the likelihood ratio based EWMA (LR_EWMA) charts are also investigated. The performance of the control charts is evaluated by the average run length (ARL) and standard deviation of run lengths (SDRL) computed through the Monte Carlo simulation approach. Moreover, the median run length (MRL) and some other run length (RL) percentiles are also considered in some cases. Different charts have shown the best performance in different cases. In detecting smaller shifts, while the LR_DEWMA chart outperformed the other charts in terms of ARL and MRL, the CUSUM chart has shown the best performance in terms of SDRL and IQR of RLs. The application of the proposed control charts is illustrated using a chromatography analyses data from the food industry.  相似文献   

12.
The exponentially weighted moving average (EWMA) control chart is a memory chart that is widely used in process monitoring to spot small and persistent disturbances in the process parameter(s). This chart requires normality of the quality characteristic(s) of interest and a smaller choice of smoothing parameter. Any deviations from these conditions affect its performance in terms of efficiency and robustness. For the said two concerns, this study develops a new mixed EWMA chart under progressive setup (mixed EWMA–progressive mean [MEP] chart). The proposed MEP chart combines the advantages of robustness (under nonnormal scenarios) and high sensitivity to small and persistent shifts in the process mean. The performance of the proposed MEP control chart is evaluated in terms of average run length and some other characteristics of run length distribution. The assessment of the proposed chart is made under standard normal, student's t, gamma, Laplace, logistic, exponential, contaminated normal and lognormal distributions. The performance of the proposed MEP chart is also compared with some existing competitors including the classical EWMA, the classical cumulative sum (CUSUM), the homogenously weighted moving average, the mixed EWMA–CUSUM, the mixed CUSUM–EWMA and the double EWMA charts. The analysis reveals that the proposal of this study offers a superior design structure relative to its competing counterparts. An application from substrates manufacturing process (in which flow width of the resist is the key quality characteristic) is also provided in the study.  相似文献   

13.
Control charts are effective tools for signal detection in manufacturing processes. As much of the data in industries come from processes having non‐normal or unknown distributions, the commonly used Shewhart variable control charts cannot be appropriately used, because they depend heavily on the normality assumption. The average run length (ARL) is generally used to measure the detection performance of a process when using a control chart, but it is biased for the monitoring statistic with an asymmetric distribution. That is, the ARL‐biased control chart leads to take longer to detect the shifts in parameter than to trigger a false alarm. To overcome this problem, we herein propose an ARL‐unbiased exponentially weighted moving average proportion (EWMA‐p) chart to monitor the process variance for process data with non‐normal or unknown distributions. We further explore the procedure to determine the control limits and to investigate the out‐of‐control variance detection performance of the ARL‐unbiased EWMA‐p chart. With a numerical example involving non‐normal service times from a bank branch in Taiwan, we illustrate the applications of the proposed ARL‐unbiased EWMA‐p chart and also compare the out‐of‐control detection performance of the ARL‐unbiased EWMA‐p chart, the arcsin transformed symmetric EWMA variance, and other existing variance charts. The proposed ARL‐unbiased EWMA‐p chart shows superior detection performance. Thus, we recommend the ARL‐unbiased EWMA‐p chart for process data with non‐normal or unknown distributions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) charts are popular statistical tools to improve the performance of the Shewhart chart in detecting small process shifts. In this study, we propose the mixed generally weighted moving average (GWMA)‐CUSUM chart and its reverse‐order CUSUM‐GWMA chart to enhance detection ability compared with existing counterparts. The simulation revealed that the mixed GWMA‐CUSUM and mixed CUSUM‐GWMA charts have the sensitivity to detect small process shifts and efficient structures compared with the mixed EWMA‐CUSUM and mixed CUSUM‐EWMA charts, respectively. Moreover, the mixed GWMA‐CUSUM chart with a large design parameter has robust performance, regardless of the high tail t distribution or right skewness gamma distribution.  相似文献   

15.
Shewhart, exponentially weighted moving average (EWMA), and cumulative sum (CUSUM) charts are famous statistical tools, to handle special causes and to bring the process back in statistical control. Shewhart charts are useful to detect large shifts, whereas EWMA and CUSUM are more sensitive for small to moderate shifts. In this study, we propose a new control chart, named mixed CUSUM‐EWMA chart, which is used to monitor the location of a process. The performance of the proposed mixed CUSUM‐EWMA control chart is measured through the average run length, extra quadratic loss, relative average run length, and a performance comparison index study. Comparisons are made with some existing charts from the literature. An example with real data is also given for practical considerations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Control charts have been broadly used for monitoring the process mean and dispersion. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are memory control charts as they utilize the past information in setting up the control structure. This makes CUSUM and EWMA‐type charts good at detecting small disturbances in the process. This article proposes two new memory control charts for monitoring process dispersion, named as floating T ? S2 and floating U ? S2 control charts, respectively. The average run length (ARL) performance of the proposed charts is evaluated through a simulation study and is also compared with the CUSUM and EWMA charts for process dispersion. It is found that the proposed charts are better in detecting both positive as well as negative shifts. An additional comparison shows that the floating U ? S2 chart has slightly smaller ARLs for larger shifts, while for smaller shifts, the floating T ? S2 chart has better performance. An example is also provided which shows the application of the proposed charts on simulated datasets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are commonly used for monitoring the process mean. In this paper, a new hybrid EWMA (HEWMA) control chart is proposed by mixing two EWMA control charts. An interesting feature of the proposed control chart is that the traditional Shewhart and EWMA control charts are its special cases. Average run lengths are used to evaluate the performances of each of the control charts. It is worth mentioning that the proposed HEWMA control chart detects smaller shifts substantially quicker than the classical CUSUM, classical EWMA and mixed EWMA–CUSUM control charts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Exponentially weighted moving average (EWMA) control charts are well-established devices for monitoring process stability. Typically, control charts are evaluated by considering their Average Run Length (ARL), that is the expected number of observations or samples until the chart signals. Because of the limitations of an average, various papers also dealt with the run length distribution and quantiles. Going beyond these papers, we develop algorithms for and evaluate the quantile performance of EWMA control charts with variance adjusted control limits and with fast initial response features, of EWMA charts based on the sample variance, and of EWMA charts simultaneously monitoring mean and variance. Additionally, for the mean charts we consider medium, late and very late process changes and their impact on appropriately conditioned run length quantiles. It is demonstrated that considering run length quantiles can protect from constructing distorted EWMA designs while optimising their zero-state ARL performance. The implementation of all the considered measures in the R package ‘spc’ allows any control chart user to consider EWMA schemes from the run length quantile prospective in an easy way.  相似文献   

19.
Control charts are popular monitoring tools in statistical process control toolkit. These are used to identify assignable causes in the process parameters (location and/or dispersion). These assignable causes result in a shift in the process parameter(s). The shift can be categorized into three sizes (small, moderate, and large). Memory control charts such as the exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) charts are effective for identifying small-to-moderate shift(s) in the process. Likewise, mixed memory control charts are useful for efficient process monitoring. In this study, we have proposed two new mixed memory control charts based on auxiliary information named MxMEC and MxMCE control charts to improve the efficiency of these mixed charts. The MxMEC chart is a merger of the auxiliary information based MxEWMA chart and the classical CUSUM chart. Likewise, the MxMCE chart integrates the auxiliary information based MxCUSUM with the classical EWMA chart. The proposed MxMEC and MxMCE charts are evaluated through famous performance measures including average run length, extra quadratic loss, relative average run length, and performance comparison index. The performance of the study proposals is compared with the existing counterparts such as the classical CUSUM and EWMA, MxCUSUM, MxEWMA, MEC, MCE, and runs rules-based CUSUM charts. The comparisons revealed the superiority of the proposed charts against other competing charts particularly for small-to-moderate shifts in the process location. Finally, a real-life data is used to show the implementation procedure of the proposed charts in practical situations.  相似文献   

20.
A control chart is a graphical tool used for monitoring a production process and quality improvement. One such charting procedure is the Shewhart‐type control chart, which is sensitive mainly to the large shifts. For small shifts, the cumulative sum (CUSUM) control charts and exponentially weighted moving average (EWMA) control charts were proposed. To further enhance the ability of the EWMA control chart to quickly detect wide range process changes, we have developed an EWMA control chart using the median ranked set sampling (RSS), median double RSS and the double median RSS. The findings show that the proposed median‐ranked sampling procedures substantially increase the sensitivities of EWMA control charts. The newly developed control charts dominate most of their existing counterparts, in terms of the run‐length properties, the Average Extra Quadratic Loss and the Performance Comparison Index. These include the classical EWMA, fast initial response EWMA, double and triple EWMA, runs‐rules EWMA, the max EWMA with mean‐squared deviation, the mixed EWMA‐CUSUM, the hybrid EWMA and the combined Shewhart–EWMA based on ranks. An application of the proposed schemes on real data sets is also given to illustrate the implementation and procedural details of the proposed methodology. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号