首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设计了一种新型结构的光子晶体光纤,建立了对应的数学模型并采用全矢量有限元法对该结构的模场强度、有效折射率、双折射、色散特性和限制损耗进行了分析。研究表明,该光纤在1 550nm处可以获得高达7.66×10-3的双折射和低至12ps/(nm·km)的色散值,同时在800~1 600nm波长范围内,始终保持1.498×10-6 dB/m以下的极低限制损耗,可用于制造极低色散值的保偏光纤。  相似文献   

2.
Novel highly nonlinear photonic crystal fibers(HN-PCFs) with flattened dispersion are proposed by omitting 19 air holes as the fiber core.The simulation results show that the high nonlinearity and the flattened dispersion can be achieved simultaneously by employing only two types of air holes in the cladding.To reduce the confinement loss,the modified designs are presented.The confinement loss is below 0.1 dB/km at 1.55 μm,when seven layers of air-hole rings are introduced to the cladding.After modifying,the dispersion can change from-0.5 ps/(nm.km) to+0.5 ps/(nm.km) in the range from 1.35 μm to 2.06 μm,and the effective mode area is as low as 2.27 μm 2 at 1.55 μm.  相似文献   

3.
高双折射光子晶体光纤特性分析   总被引:3,自引:8,他引:3  
建立了基于透明边界条件(TBC)的全矢量迦辽金有限元法(FEM)分析二维光子晶体光纤(PCF)的模型,并对椭圆芯等5种高双折射光子晶体光纤基模的模式双折射、限制损耗及色散特性进行了数值分析和比较.通过减小内包层中沿x方向的空气孔,增大沿y方向的空气孔构成的一种光子晶体光纤的模式双折射在波长1550 nm处高达5.96×10-3,而椭圆芯光子晶体光纤为1.52×10-3.研究表明,可通过增加内包层中两个正交方向上空气孔的尺寸差来获得高双折射;同时还得出内包层中放大的空气孔减小限制损耗,增加色散,而减小空气孔尺寸带来的影响则刚好相反;内包层上空气孔数量越少,色散越平坦.  相似文献   

4.
《Optical Fiber Technology》2014,20(5):473-477
We proposed a novel photonic quasi-crystal fiber with near-zero flattened dispersion, highly nonlinear coefficient, and low confinement loss by using the dual concentric core structure. By optimizing the structure parameter, the proposed photonic quasi-crystal fiber can achieve a nonlinear coefficient larger than 33 W−1 km−1 and near-zero flatten dispersion of 0 ± 3.4 ps/nm/km with a near-zero dispersion slope of 8.5 × 10−3 ps/nm2/km at the wavelength of 1550 nm. Near-zero flattened dispersion and low confinement loss in the ultralow order of 10−7 dB/m are simultaneously obtained in the wavelength range from 1373 to 1627 nm. Furthermore, two zero dispersion wavelengths can be achieved in a wide wavelength ranger from 1373 to 1725 nm. From the point of view of practical fabrication, the influence of deviation of each air hole diameter within 3% of imperfections on dispersion, nonlinearity, and is discussed to verify the robustness of our design.  相似文献   

5.
Photonic crystal fibers (PCFs) with elliptical air-holes located in the core area that exhibit high birefringence, low losses, enhanced effective mode area, and low chromatic dispersion across a wide wavelength range have been presented. The effects of bending on birefringence, confinement losses and chromatic dispersion of the fundamental mode of the proposed PCFs have been thoroughly investigated by employing the full vectorial finite element method (FEM). Additionally, localization of higher order modes is presented. Also, effects of angular orientation on bending loss have been reported. Significant improvement on key propagation characteristics of the proposed PCFs are demonstrated by carefully altering the desired air hole diameters and their geometries and the hole-to-hole spacing.  相似文献   

6.
设计了一种第一层为椭圆空气孔缺陷的宽带色散平坦光子晶体光纤,借助全矢量有限元法对这种结构的光子晶体光纤的色散特性、模场面积、双折射和限制损耗特性进行了数值模拟.结果表明改进的光子晶体光纤的色散曲线可以在很宽的波长范围内保持色散平坦并具有较低的色散值,其模场面积较未改进光子晶体光纤的模场面积要大,光纤的限制损耗变小且双折射也相当小.主要分析了这种光纤的结构参数的优化后,光纤的色散特性、有效模面积、双折射以及限制损耗特性的变化规律,最终设计了在1 200~1 800 nm波长范围内超平坦色散的光子晶体光纤.  相似文献   

7.
《Optical Fiber Technology》2013,19(5):461-467
In this paper, we propose and demonstrate a highly birefringent photonic crystal fiber based on a modified octagonal structure for broadband dispersion compensation covering the S, C, and L-communication bands i.e. wavelength ranging from 1460 to 1625 nm. It is shown theoretically that it is possible to obtain negative dispersion coefficient of about −400 to −725 ps/(nm km) over S and L-bands and a relative dispersion slope (RDS) close to that of single mode fiber (SMF) of about 0.0036 nm−1. According to simulation, birefringence of the order 1.81 × 10−2 is obtained at 1.55 μm wavelength. Moreover, effective area, residual dispersion, effective dispersion, confinement loss, and nonlinear coefficient of the proposed modified octagonal photonic crystal fiber (M-OPCF) are also reported and discussed.  相似文献   

8.
提出了一种新型的混合双包层结构的光子晶体光纤。利用多极法对光纤基模的模场分布、双折射、限制损耗及色散特性等进行了数值模拟,通过调节包层空气孔的孔径大小可以有效地控制光纤的双折射和限制损耗特性。结果发现:新设计的光纤具有高双折射低限制损耗特性,光纤结构参数为=1.0 m,d1=d2=d3=0.8 m时,该光纤在C波段(1.53~1.565 m)及L波段(1.57~1.62 m)呈现负色散及负色散斜率。在波长为1.55 m处,双折射高达10-2,限制损耗小于10-5 dB/m。  相似文献   

9.
Based on the full-vector finite element method with anisotropic perfectly matched layers, modal birefringence and confinement loss for the fundamental mode in rectangular-lattice photonic crystal fibers with different sizes of elliptical air holes in the cladding and the core are investigated numerically. The results show that the modal birefringence in this proposed photonic crystal fibers can be up to 5.64 × 10?2 at the wavelength of 1.55 μm. Moreover, when the birefringence is higher than 4 × 10?2, the confinement loss of x-polarized mode can be kept less than 0.005 dB/km at 1.55 μm. It means that the tradeoff between the high birefringence and the low confinement loss is overcome.  相似文献   

10.
The study reports on the design and performance of two air‐filled and two partial ethanol‐filled photonic crystal fiber (PCF) structures with a tetra core for supercontinuum generation. The PCFs are nonlinear with ultra‐flattened zero dispersion. Holes with smaller areas are used to create a tetra‐core PCF structure. Ethanol is filled in the holes of smaller area while the larger holes of cladding region are air‐filled. Optical properties including dispersion, effective mode area, confinement loss, normalized frequency, and nonlinear coefficient of the designed PCF structures are investigated via full vector finite difference time domain (FDTD) method. A PCF structure with lead silicate as wafer exhibits significantly better results than a PCF structure with silica as wafer. However, both structures report dispersion at a telecommunication wavelength corresponding to 1.55 μm. Furthermore, the PCF structure with lead silicate as wafer exhibits a very high nonlinear coefficient corresponding to 1375 W?1 km?1 at the same wavelength. This scheme can be used for optical communication systems and in optical devices by exploiting the principle of nonlinearity.  相似文献   

11.
大模面积色散平坦光子晶体光纤的优化设计   总被引:2,自引:0,他引:2  
设计了一种正八边形空气孔排列的大模面积色散平坦光子晶体光纤,借助多极法对这种结构的光子晶体光纤的模场面积、有效折射率、色散系数和限制损耗进行了数值模拟.结果表明,正八边形空气孔排列的光子晶体光纤的模场面积较相同空气孔间距和空气填充率的正六边形空气孔光子晶体光纤大,且其色散曲线可以在很宽的波长范围内保持色散平坦并具有较低的色散值.主要分析了当这种光纤的结构参数发生改变时,光纤的限制损耗、有效模面积以及色散特性的变化规律,最终通过选择适当的参数,设计了在1 300~1 650 nm波长范围内色散平坦的大模面积光子晶体光纤.  相似文献   

12.
The triangular-lattice highly birefringent photonic crystal fibers(PCFs) with gradually increasing diameter of the air holes along radial axis are put forward. The modal birefringence, dispersion and confinement loss of the fundamental mode are simulated by full vector Galerkin finite element method(FEM) with a perfectly matched layer(PML). The results show that this PCF can keep low confinement loss when the rings of air holes are few. When the wavelength is 1.55 μm, the birefringence, the confinement loss of quick-axis and slow-axis are 1.365×10^-3, 0.017 dB/m and 0.051 dB/m, respectively. A new way is proposed to fabricate polarization-mainting fibers with high performance.  相似文献   

13.
This paper presents an optimum design for highly birefringent hybrid photonic crystal fiber (HyPCF) based on a modified structure for broadband compensation covering the S, C, and L-communication bands i.e. wavelength ranging from 1460 to 1625 nm. The finite element method (FEM) with perfectly matched layer (PML) circular boundary is used to investigate the guiding property. It is demonstrated that it is possible to obtain broadband large negative dispersion, and dispersion coefficient varies from −388.72 to −723.1 ps nm−1 km−1 over S, C and L-bands with relative dispersion slope (RDS) matched to that of single mode fiber (SMF) of about 0.0036 nm−1 at 1550 nm. According to simulation, a five-ring dispersion compensating hybrid cladding photonic crystal fiber (DC-HyPCF) is designed that simultaneously offers birefringence of order 3.79 × 10−2, nonlinear coefficient of 40.1 W−1 km−1 at 1550 nm wavelength. In addition to this, effective area, residual dispersion, and confinement loss of the proposed DC-HyPCF are also reported and discussed.  相似文献   

14.
为了同时实现高双折射高非线性并得到低损耗,设计一种在光纤纤芯附近引入椭圆形空气孔和圆形空气孔组成的新型优化的八边形光子晶体光纤。采用全矢量有限元法结合各向异性完美匹配层,对该光纤的有效面积、非线性、双折射和损耗特性进行了模拟分析。数值模拟结果表明,通过选择适当的结构参数,在波长1.55 m处,该光纤具有高双折射高达B=1.6810-2,比普通光纤高两个数量级,高非线性系数为=60 W-1km-1和低损为0.6 dB/km。这种具有高双折射高非线性系数的光纤可用于光通信、偏振敏感的各种设备和产生超连续普等领域。  相似文献   

15.
《Optical Fiber Technology》2013,19(5):363-368
In this paper, two novel structures of photonic crystal fibers (PCFs) containing elliptical rings of circular air holes are presented. The circular air holes in both structures are arranged in seven elliptical rings, but the number of holes in each ring is different for these structures. Moreover, air hole diameter and hole-to-hole pitch are altered along the distance from the center of the fiber’s cross section. Properties, such as birefringence and confinement loss, of these structures with different numbers of air hole rings are numerically analyzed by using the multipole method. Numerical results show that a high birefringence of 1.626 × 10−3 can be reached at the wavelength of 1.55 μm, and a low confinement loss on the order of 10−8 dB/m can be achieved at the same wavelength. Furthermore, it is also found that elliptic ratio obviously affects birefringence and confinement loss, but the number of air hole rings has little impact on birefringence.  相似文献   

16.
廖洲一  刘敏  钱燕  何丁丁  简多 《激光技术》2013,37(4):506-510
为了消除光纤通信系统中色散,采用各向异性完全匹配层和全矢量有限元方法,进行了理论分析和实验验证,设计了一种基于八角格子晶体的同轴双芯色散补偿光子晶体光纤;得到了该色散补偿光纤的传输特性如基模有效折射率、色散、损耗和非线性系数方面的数据,并分析了光纤波导色散与色散补偿光纤结构参量之间的关系。结果表明,所设计的光纤在200nm的负色散范围内,拥有负色散值(在波长为1.55m处有最低负色散值-1500 ps/(nmkm)),同时在E+S+C波段有较低的限制损耗(小于3.3dB/km);非线性效应也得到显著抑制。  相似文献   

17.
Highly birefringent photonic crystal fibers (PCFs) with low confinement loss with ultralow and ultraflattened chromatic dispersions at wide wavelength band are presented. The transverse electric field vector distributions of two linearly polarized fundamental modes, their effective indices, modal birefringence, confinement losses and chromatic dispersion of the proposed PCFs are reported by using full-vector finite-element method (FEM). Significant improvements of PCFs in terms of the birefringence, chromatic dispersion and confinement losses are demonstrated by careful investigation of all air holes in each ring, air holes diameters and hole-to-hole spacing. In addition to this, the polarization beat length results of the proposed PCFs are also reported and discussed thoroughly.  相似文献   

18.
提出了一种在纤芯引入四个近矩形排列的椭圆空气孔,包层空气孔呈阶梯结构的高双折射光子晶体光纤,采用全矢量有限元方法,对光纤基模的模场分布、双折射、色散、限制损耗、有效模面积及非线性系数等特性进行了数值模拟.这种设计为获得高双折射光子晶体光纤提供了一种新的方法,为改善光子晶体光纤其他性能(如色散、非线性特性)提供了一种新的...  相似文献   

19.
This paper presents the results of the modal analysis of an index guiding soft glass photonic crystal fiber infiltrated with a nematic liquid crystal (NLC-PCF). The modal analysis is carried out using the full vectorial finite difference method which is capable of dealing accurately with anisotropic waveguide problems. The analyzed parameters are the effective index, birefringence, dispersion, effective mode area, and confinement losses for the two fundamental polarized modes. The effects of the structure geometrical parameters, rotation angle of the director of the NLC and temperature on the modal properties are investigated. The numerical results reveal that the proposed design offers high birefringence of 0.012 at the operating wavelength 1.55 mum with low losses for the two polarized modes. In addition, the structure is tailored to obtain a flat dispersion over a wide range of wavelengths with high birefringence.  相似文献   

20.
A new high nonlinear dispersion flattened photonic crystal fiber is proposed. This fiber has three-fold symmetry core. The doped region in the core and the big air-holes in the 1-st ring can make high nonlinearity in the PCF. And the small air-holes in the 1-st ring and the radial increasing diameters air-holes rings in cladding can be used to turn the dispersion properties of the PCF. We can achieve the optimized optical properties by carefully selecting the PCF's structure parameters. A PCF with flattened dispersion is obtained. The dispersion is within ±0.8 ps·nm-1·km-1 from 1.50 μm to 1.62 μm. The nonlinear coefficient is about 12.645 6 W-1·km-1, the fundamental mode area is about 10.257 9 μm2 and the birefringence is about 3.086 96×10-5 at 1.55 μm. This work may be useful for effective design and fabrication of dispersion flattened photonic crystal with high nonlinearities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号