首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对地下洞室的长期观测和量测都表明,许多在成洞之初呈现稳定的岩体,由于变形随着时间推移而不断发展,经过一段时间之后,洞体可能失稳或坍塌破坏,特别是大型地下洞室,地质条件复杂、开挖时间长、扰动大,其长期稳定性更值得关注。向家坝地下厂房为一超大型地下洞室,开挖跨度在国内外已建、在建和拟建的水电站中居第一,其跨度和规模均居世界前列。洞室围岩地质条件复杂,岩性较差,有不稳定块体,地下水较为丰富,岩石透水性较好,且夹杂有多条软弱夹层,对地下厂房长期运行不利。基于此,通过试验得到了地下厂房围岩的长期强度;结合实际工程中常用的变形和流变速率,提出了洞室最佳支护时间、长期稳定流变时间、最大流变变形的判据;对洞室支护措施进行了模拟,对其支护效果进行了评价。经过总结分析,得到了对工程有指导性的结论。  相似文献   

2.
 由于岩石的非均质性、裂隙的存在以及所处地质环境的复杂性,岩样在蠕变破坏过程中通常表现出各向异性的特点。为了描述岩石的这种各向异性蠕变性质,在经典弹黏塑性理论的基础上,提出黏塑性流动系数张量表达式,建立岩石各向异性弹黏塑性蠕变模型,将该模型嵌入到三维弹塑性细胞自动机模型中,开发岩石蠕变过程分析的三维弹黏塑性细胞自动机模拟系统(EPCA3D-EVP),建立非均质岩石蠕变破坏过程的分析方法,该方法通过常规三轴数值试验来确定细观单元的强度和变形参数,通过蠕变试验确定其黏塑性流动系数,克服岩石力学模拟中“数据有限”的瓶颈问题,并通过对甘肃北山核废物地下处置候选场址的裂隙花岗岩三轴蠕变试验验证该模型和分析方法的正确性,合理地描述裂隙花岗岩在渗流–应力作用下产生各向异性的宏观现象。  相似文献   

3.
Siah Bisheh pumped storage powerhouse cavern with complex geometry, changeable geological formations and diverse geotechnical properties of rocks, is under construction on the Chalus River at the north of Iran. Powerhouse cavern is located near the lower dam reservoir and its crown is more than 30 m down the lower dam maximum lake level. After impounding of lower dam, powerhouse region will be located under saturated condition. Therefore long term stability assessment of the powerhouse cavern under saturated condition is unavoidable. In this study, displacement based direct back analysis using univariate optimization algorithm were applied and geomechanical properties of rocks, stress ratio and joints parameters were identified. Numerical modeling results are in good agreement with measured displacements using extensometers which confirm the numerical modeling accuracy and back analysis results. Then ordinary analysis of powerhouse cavern under natural condition using back analysis results were carried out. Results of analysis shows that powerhouse cavern is stable under natural condition and existing support system has suitable efficiency and could effectively control displacements. Finally, powerhouse cavern long term stability under saturated condition was analyzed. Results of analysis shows that after lower dam impounding, pore water pressure and uplift pressure in discontinuities around powerhouse cavern will arose and tend to local failure of powerhouse cavern in region 2nd and 3rd instrumentation arrays. To obtain powerhouse long term stability, it is recommended to construct a cutoff curtain around powerhouse cavern.  相似文献   

4.
Three-dimensional (3D) numerical simulation of Shiobara hydropower cavern was attempted with the developed practical equivalent approach. This simple equivalent approach integrates the effect of joints and corresponding nonlinearity in the rock and predicts its deformation behaviour. The model requires minimum inputs from field or laboratory tests and is efficient to capture the nonlinear stress–strain responses associated with the jointed rock mass. In this study, the applicability of the model was demonstrated with the 3D analysis of Shiobara hydropower cavern. The numerical results were also compared with those of six other computational models to analyse the same cavern. The 3D modelling of powerhouse cavern shows that the present approach, though simple, can be applied to large-scale field problems. The model can precisely predict the deformation values well, and this study confirmed the effectiveness of the approach for simulation of underground structures in jointed rocks.  相似文献   

5.
层状盐岩储气库在长期运行期间,盐岩层与泥岩夹层两种不同岩石材料会因较大的蠕变差异引起变形不协调,在交界面产生剪切应力导致界面滑移破损,使油气沿着界面破损通道泄漏。结合我国在层状盐岩地质构造中建设能源储库的实际情况,通过对湖北云应地区层状盐岩中的盐岩和泥岩夹层的三轴蠕变试验表明,盐岩蠕变率比泥岩蠕变率至少大一个数量级。建立蠕变本构模型,对储库长期运行期内层状盐岩界面剪切应力的分布和变化规律进行数值分析,并讨论了盐岩稳态蠕变率不同时,界面层间剪切应力的变化情况。研究结果表明,界面层间剪切应力集中分布在靠近腔体的小段范围内,其后层间剪切应力迅速降低,且随着蠕变时间的增加,层间剪切应力增加的越来越快;盐岩的蠕变特性越好,层间剪切应力越大,当界面剪切应力达到界面抗剪强度时,就会发生破坏。蠕变试验和数值模拟结果,对于层状盐岩渗漏稳定性和密闭性研究具有重要指导意义。  相似文献   

6.
软硬互层边坡岩体的蠕变特性研究及稳定性分析   总被引:15,自引:11,他引:15  
岩体的蠕变性是影响边坡变形与长期稳定性的重要因素之一。以清江水布垭坝址区马崖高边坡为例,针对边坡内具代表性的软岩和硬岩,通过开展室内岩石压缩蠕变试验,研究了不同类型软、硬岩石的蠕变破坏特征,据此建立了岩石的流变本构模型并进行参数辨识。在此基础上,应用三维粘弹塑性方法对马崖高边坡的时效变形及稳定性进行数值分析,探讨了边坡在开挖卸荷及泄洪冲切(运行期)等工程荷载作用下岩体的蠕变变形及塑性区发展。研究结果表明,软硬互层边坡岩体的蠕变效应十分显著,对于大规模开挖的岩质高边坡而言,岩体的蠕变特征不仅影响到边坡的位移量值,而且改变了边坡的位移形态。在工程长期运行过程中,岩体蠕变引起的应力场变化使得坡体内塑性区分布由坡面向坡内延伸,按流变10a计,其延伸深度可达数十米。  相似文献   

7.
红层软岩地区高速铁路路基在运营期出现持续上拱变形,已成为当前阻碍我国高速铁路发展的又一关键因素,为揭示引起红层软岩地基时效性上拱变形机制,以西南地区某典型红层软岩深挖路堑路基上拱变形病害工点为依托,在现场工程地质与水文地质调查分析的基础上,结合基底地应力测试、红层软岩的吸水膨胀性试验和不同水理条件下的蠕变性试验结果,从地基岩体赋存的水、力环境、红层泥岩的时效性膨胀特性和水–力耦合蠕变特性角度,建立红层软岩地基分层变形机制模型,并系统分析地基短期、中期和长期上拱变形机制和特征。研究成果表明:(1)上拱区段属红层泥岩夹薄层砂岩的近水平地层结构,开挖法向卸荷引起浅层岩体微观裂隙松弛而视显,深层岩体仍为完整,地基岩体水平切向应力显著增大导致路基变形具有明显的结构效应;(2)侧向约束轴向自由下,红层泥岩吸水的时效性变形特征与其岩性及结构特征有关;(3)红层泥岩在低应力状态下即表现出典型的三阶段蠕变变形特征,且轴向应力越小,蠕变应变比越大;(4)水–力耦合作用下红层泥岩蠕变特性更为显著,大量级卸荷情况下上拱蠕变显著增大,蠕变稳定持续时间增长;水汽–力耦合作用下仍会出现显著的蠕变变形,蠕变稳定持续时...  相似文献   

8.
岩石非定常蠕变模型辨识   总被引:4,自引:0,他引:4  
在页岩蠕变试验数据基础上,分析岩石黏弹性变形随应力水平不同和时间发展的变化规律.通过反分析方法建立一维情况下非定常黏弹性模型的蠕变方程,通过应变的理论计算结果与试验结果的对比发现,不考虑参数的时间相关性将引起较大的误差,而考虑参数的时间相关性的非定常黏弹性模型比定常黏弹性模型可更为准确地反映岩石的黏弹性变形性能.在软岩巷道二维非定常蠕变模型辨识的工程实例中,事先假定围岩为黏弹性和黏弹塑性两种不同力学模型,并分别考虑参数为定常和非定常两种情形,在已知现场量测位移条件下,利用位移反分析并根据一定的准则函数求其不同模型中的参数及相应的准则函数值,由各个模型相应的准则函数值大小,判定最佳模型.在假定的一组模型里,发现非定常黏弹塑性模型为最佳模型.  相似文献   

9.
官地水电站地下厂房属典型的硬岩地区深埋大型地下洞室群,其重要特点是同时面临高地应力和结构面发育这2个不利条件,实测最大主应力为25~35 MPa,厂区无大的断层和软弱结构面,但错动带和裂隙十分发育。通过对地下洞室群施工过程中出现的围岩局部失稳破坏现象进行全面的分析整理,对三大洞室的岩体结构特征和围岩变形破坏模式进行系统的分析、比较和总结,从而对影响围岩稳定的两大控制因素——地应力和岩体结构对官地地下厂房洞室群围岩稳定的影响程度和方式进行分析和对比。研究表明,由于三大洞室围岩类别以II类为主,岩体结构以块状~次块状结构为主,围岩具有较高的力学强度和强度应力比,从而具有较强的抵抗应力破坏的能力;岩体结构对地下厂房围岩变形与稳定的控制作用较地应力则更为明显,地下洞室群开挖过程中出现的局部失稳或较大变形多与不利方位的结构面直接相关。三大洞室围岩岩体结构特征总体上的相似性非常明确,反映在三大洞室围岩的变形特征和破坏模式上具有很好的统一性。然而,三大洞室的岩体结构特征也存在一定的差异,导致岩体结构影响围岩稳定的方式和程度有所不同。结构面发育造成的另一个不利影响是为坚硬岩体在高地应力条件下产生卸荷时效变形提供了内部条件。因此,在强度应力比较高的硬岩地区,应充分重视岩体结构及其演化对围岩变形和稳定的控制效应。  相似文献   

10.
The stability and support effects of large-scale underground caverns located in jointed rock masses are principally ruled by the mechanical behavior of discontinuities. The major deformations of the host rock masses containing underground caverns originate from the normal and shear movements among the walls of discontinuities. Therefore, in the numerical simulations of the deformation behavior of underground structures, how to accurately model the discontinuities becomes a key problem. In this study, a 2-D distinct element code, UDEC, was used to analyze the deformation behavior of an underground cavern of a pumped storage power plant, based on in-situ geological data. The validity of numerical simulation was evaluated by comparing the numerical results with the site measurement data at two cross-sections of the cavern. Some local deformation behavior of the cavern affected by the characteristics of discontinuity distributions was discussed. The influences of cross-sectional shape of the cavern and the orientation of initial ground stress on the performance of cavern were evaluated. The simulation results revealed that the orientation, position and density of discontinuities as well as the cross-sectional shape of a carven influence its deformation behavior and stability significantly.  相似文献   

11.
锦屏一级水电站地下洞群规模巨大,布置复杂,且位于3条大断层及多组节理切割的高应力地质体内。多洞交叉大型洞群多步开挖强卸荷过程中,主洞室结构面或断层破碎带的支护方式、参数选取与优化以及支护时机的确定是影响整个设计洞群稳定的关键问题之一。结合地下厂房洞群的开挖支护过程,研究主洞室围岩断层带变形破坏力学机制,探讨围岩分层次支护的耦合作用机制以及力学与变形特征。基于对洞室围岩不同支护形式的数值模拟和原位监测,研究在挂网喷射混凝土支护系统中增加钢筋拱肋这一强柔性支护技术。结果表明,该种支护技术措施能有效地控制围岩变形,避免局部失稳导致洞群不稳定或垮塌现象的产生,对大型洞群开挖支护设计与施工具有重要参考价值和指导意义。  相似文献   

12.
Long-term stability of large-span caverns is a challenging issue for design and construction of underground rock engineering. The Heidong cavern group consisting of 21 caverns was constructed about 1400 years ago for quarrying in massive Cretaceous tuff. The cavern No. 5 of the Heidong cavern group is characterized by an unsupported span up to 92 m, with the overburden thickness of only 3–25 m. To analyze its long-term stability, a detailed investigation was conducted to obtain its geometry and rock mass characteristics, and to monitor surrounding rock displacements. Based on field survey and laboratory tests, numerical simulations were performed using the finite difference code FLAC3D. The analysis results revealed that for the long-term stability of the cavern No. 5, some major factors should be carefully considered, such as cavern excavation method in hard massive rocks, site investigation using trial pits, tools like short iron chisel and hammer for manual excavation, geometric dome roof, and waste rocks within abutment or on the floor. The highlights of the technologies obtained from this large-scale ancient underground project can provide reference for other similar project excavations in practice.  相似文献   

13.
大型地下石油洞库自然水封性应力-渗流耦合分析   总被引:3,自引:0,他引:3  
根据地质条件,地下水封石油洞库可以选择自然水封或人工水封方式。以中国首个大型地下水封石油洞库为背景,开展了岩石三轴压缩试验和现场水文试验,获得了洞库围岩变形特征和渗透特性,采用应力-渗流耦合理论,分析了该地下石油洞库的自然水封性与稳定性。岩石三轴实验表明,岩体受剪作用下体积变化情况与剪胀性密不可分。现场水文试验表明,洞库渗透系数存在一定的不确定性。通过数值分析得出如下结论:自然水封条件下,洞库水位将不满足水封要求;地下水封洞库实现水封条件的水头受水力梯度和岩体渗透性影响;洞库施工期涌水量与渗透系数存在着分形关系;施工期各洞室拱顶沉降为19~32 mm,水平收敛为16~35 mm。研究成果为中国首个大型地下水封石油洞库工程建设提供了科学依据。  相似文献   

14.
The rock masses in a construction site of underground cavern are generally not continuous, due to the presence of discontinuities, such as bedding, joints, faults and fractures. The performance of an underground cavern is principally ruled by the mechanical behaviors of the discontinuities in the vicinity of the cavern. A number of experimental and numerical investigations have demonstrated the significant influences of discontinuities on the mechanical, thermal and hydraulic behaviors of discontinuous rock masses, indicating that the deformation mechanism and stability of rock structures in the discontinuous rock masses depend not only on the existing discontinuities but also on the new cracks generated and thereafter keep propagating due mainly to the stress redistribution induced by excavation.In this study, an expanded distinct element method (EDEM) was developed for simulating the crack generation and propagation due to the shear and tension failures in the matrix rock blocks. Using this method, excavation simulations of deep underground caverns have been carried out on the models with differing depths of cavern and differing geometrical distributions of the existing discontinuities. Model experiments by using the base friction test apparatus were conducted to verify the proposed numerical approach. Furthermore, the support effects of rock bolts on controlling the deformations of the rock mass surrounding a cavern and movements of key blocks were evaluated by means of the EDEM approach.  相似文献   

15.
The mechanical and hydraulic behavior of rock salt in the excavation disturbed zone (EDZ) around sealing systems in underground repositories is relevant for the assessment of the safety function of these geotechnical barriers. It has been determined through laboratory tests that the development of the EDZ, and thus, the hydraulic pathways, is closely related to the corresponding damage boundary and the associated damage. By integrating short- and long-term strength considerations, dilatancy, damage and healing into the newly extended Hou/Lux constitutive model for rock salt, it is possible to treat the tertiary creep in order to identify the EDZ around underground facilities. This leads to prediction of the time-dependent development of the EDZ and, together with a permeability model, calculation the permeability of rock salt in the EDZ.With the Hou/Lux model, several phenomena, such as EDZ, spalling, dilatancy and radial deformation into the axial bore observed in laboratory tests on axially perforated cylinder samples are simulated qualitatively and quantitatively.Under in situ conditions, the EDZ of a 37-year-old drift at the Sondershausen mine, the prototype cavity at the Asse mine, as well as a 1,000,000 m3 salt cavity, are examined. The results are then compared with the stress and permeability measurements at the Sondershausen mine. The calculations show the various capabilities of the Hou/Lux model, including tertiary creep and creep rupture, identification and development of the EDZ, development of dilatancy, of permeability, of damage and of healing, and finally, stress rearrangements from the contour into the center of the rock mass formation.  相似文献   

16.
This paper presents a framework for the near-field stochastic discontinuum modeling and uncertainty analysis of groundwater inflow into underground excavations by direct utilization of discrete fracture network (DFN) concept. The sources of uncertainty in the groundwater inflow into underground excavations in fractured rocks were classified into two different groups including the geometrical and hydraulic properties of fractures. The main input data for stochastic discontinuum modeling of groundwater inflow were captured from site investigations in Siah Bisheh pumped storage project in Iran. Detailed measurements of groundwater inflow into powerhouse and transformer caverns provided the possibility to determine the hydraulic aperture through back calibration. The validity of calibrated hydraulic aperture was explored by simulation results of the groundwater inflow into transformer cavern, and shows high accuracy when compared with data obtained from field measurements. The statistical results of these groundwater flow simulations with constant calibrated hydraulic aperture reflected the uncertainty associated with geometrical properties of fractures. Finally, the role of hydraulic properties of fractures on the uncertainty of groundwater inflow was investigated by the variation of standard deviation of hydraulic aperture through the sensitivity analysis. The results of this study demonstrated that the geometrical properties of fractures did much greater uncertainty in the groundwater inflow into underground excavations than hydraulic properties. Moreover, it was found that both the mean and standard deviation of simulated groundwater inflow into underground excavations decrease non-linearly by increasing the standard deviation of hydraulic aperture even though it is generally anticipated that the uncertainty of hydrogeological systems increases by increasing the variance of hydraulic parameters.  相似文献   

17.
依据对岩石长期强度的认识,基于环境因素影响下岩石强度、弹模等物理力学性质随时间劣化及其内部细观损伤积累等观点,应用RFPA数值模拟方法,模拟了隧洞围岩的时效破坏过程,并与相应的物理模型试验结果进行了对比。隧洞数值模拟试验得到了拱顶、拱底以及两侧帮的时效变形特征曲线,与实际物模试验结果表现出了较好的一致性,并且发现隧洞围岩宏观破坏是细观损伤实时演化及逐步积累的最终表现。进一步模拟分析了侧压系数对隧洞时效变形破坏特性的影响,模拟结果显示,随着侧压系数的增大,隧洞左右边墙间的闭合位移逐渐增大,而隧洞拱顶拱底间的收敛位移随侧压系数的增大逐渐减小,并对隧洞围岩的局部的细观损伤演化过程及宏观时效破坏模式做出了清晰的解释。  相似文献   

18.
Weak rock mass behavior is an important and challenging consideration during construction and utilization of a tunnel. Tunnel surrounding ground deformation in weak rocks causes to gradual development of loading on the support system and threats the opening stability. In this research, time-dependent behavior of Shibli twin tunnels was investigated using laboratory testing, monitoring data, and finite difference numerical simulation approaches. The host rock of Shibli tunnels are mainly composed of gray to black Shale, Marl and calcareous Shale. Geological maps and reports demonstrate a heavily jointed condition in the host rock through two orogenic phases. The experiment was organized in following order to understand the behavior of the rock mass around the tunnels. At first, triaxial creep test were conducted on intact rock specimens. Then, the time-dependent behavior of the tunnel host rock was numerically simulated considering Burger-creep visco-plastic model (CVISC). Finally, displacement based direct back analysis using univariate optimization algorithm was applied. Also, the properties of the CVISC model and initial stress ratio were estimated. Numerical modeling was verified by its comparison with tunnel displacement monitoring results. The creep behavior of the rock mass was predicted during tunnel service life based on back analysis results. Results show that thrust force, bending moment, and the resulting axial stresses will gradually increase at the spring line of the final lining. After 55 years of tunnel utilization the compressive strengths of lining concrete will not be stable against the induced-stresses by thrust force and bending moment, thus the tunnel inspection and rehabilitation are recommended.  相似文献   

19.
软岩蠕变理论及其工程应用   总被引:33,自引:14,他引:33  
地下工程的施工经常遇到软岩。这类岩体抗压强度较低,具有明显的流变特性,蠕变变形量较大,常造成支护的失稳和破坏。在分析地下工程的稳定性或对地下结构设计时,应充分考虑这一特性,按流变力学理论进行分析和设计。通过现场取样,采用自行研制的重力杠杆式岩石蠕变试验机,并配备三轴压力室,对泥岩进行了三轴蠕变试验。试验结果表明,泥岩的蠕变具有非线性。根据试验结果,建立了泥岩的非线性蠕变方程。根据上述非线性蠕变方程,分析了围岩的应力场和位移场,并对不同支护强度和应力状态下的蠕变变形进行了系统的分析。理论研究结果表明,控制围岩过量蠕变变形的根本途径是改善围岩应力状态,适当提高锚杆或锚索的初始预应力,从而为有效控制深部开采时围岩的有害变形提供了理论依据。  相似文献   

20.
岩体蠕变结构效应的数值模拟研究   总被引:1,自引:1,他引:1  
采用数值模拟试验方法对岩体结构的蠕变力学效应进行研究。通过对均质岩体、不同分布产状和数量的结构面试件进行单轴、三轴压缩蠕变试验的计算机仿真,探讨岩体蠕变的结构效应、围压效应以及不同结构条件下岩体的蠕变变形规律与破坏特征等。结果显示,结构面产状对岩体流变性态的影响十分显著,它不仅明显改变岩体的蠕变强度、位移形态,而且控制着岩体的破坏模式及破坏条件。大多数试件的蠕变曲线与实验室或现场得到的岩石单轴、三轴压缩蠕变曲线特征基本相似;各试件之间由于结构面产状、侧向应力水平等的不同其蠕变曲线型式在高应力状态下有所差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号