首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
基于小波-模糊神经网络的齿轮箱故障诊断   总被引:1,自引:0,他引:1  
李华 《传感技术学报》2006,19(3):672-674,745
根据齿轮箱传动部件故障机理,利用小波变换多分辨率特性和时频局部化特性,提取出故障特征信号;并利用有效的消噪技术,去除噪声干扰.参考专家经验,给出模糊规则及模糊神经网络模型,实现故障推理.并将小波变换和模糊神经网络应用在上海宝钢热轧机的齿轮故障诊断中.  相似文献   

2.
研究了基于小波分析和神经网络松散型结合的故障诊断方法。用信号的小波包分解结果作为神经网络的输入特征向量,采用遗传算法对神经网络的参数进行全局优化,最后用训练过的神经网络进行故障诊断。仿真结果表明,该方法较L-M算法有更高的计算速度和精度。将该方法应用于平流泵故障诊断,证实了它的可行性和有效性。  相似文献   

3.
为了对往复泵的故障进行正确诊断,提出了基于改进型小波神经网络的往复泵故障诊断方法。以往复泵单个泵缸内的压力信号作为系统特征信号通过小波包分解来提取故障特征向量,同时将此特征向量作为改进型神经网络的输入,利用改进型神经网络对故障做进一步的精确实时诊断。文中对小波神经网络采用的优化算法是:动量因子和学习率自适应调整相结合的梯度下降法,该方法可以提高学习速度并增加算法的可靠性。通过对往复泵液力端多故障诊断实例的检验表明,该系统故障诊断正确率达到了93%以上。  相似文献   

4.
为了准确可靠地发现和预测陀螺仪的故障,提出了一种基于RBF小波神经网络的陀螺仪故障检测方法;该方法是将陀螺仪的输出信号进行三层小波包分解,再对分解得到的8个不同频段上的节点进行特征提取,将提取后的8维特征向量作为RBF神经网络的输入;当陀螺仪发生故障时,陀螺仪的输出信号中会产生突变成分,进行训练后的RBF神经网络可以准确地诊断出陀螺仪的故障类型;应用Matlab实现了RBF小波神经网络诊断陀螺仪故障类型的仿真;仿真结果表明,应用RBF小波神经网络进行陀螺仪故障诊断有很好的效果。  相似文献   

5.
为研究风力发电机组齿轮箱的故障特性,提高其工作的可靠性,提出采用小波神经网络对齿轮箱的故障进行诊断的方案。该方案采用小波包分析与径向基函数(RBF)神经网络相结合组成小波神经网络,以准确地识别风力发电机组中齿轮箱常见的故障。诊断结果证明了方案的可行性。该方案在风力发电机组齿轮箱故障诊断领域具有良好的实用前景。  相似文献   

6.
李春明  王勇 《微计算机信息》2007,23(1S):204-205
模拟电路故障诊断具有诊断特性复杂,故障字典建立耗时长等特性,用传统的方法很难得到最佳的诊断效果。本文采用小波神经网络对故障电路建模,基于该网络学习收敛快,对网络输入不太敏感的特点,实现故障诊断。  相似文献   

7.
锅炉作为燃烧的核心设备,其安全运行至关重要,由于锅炉结构复杂,损伤、磨损、酸气腐蚀以及操作不当均会引起故障,为了有效地避免故障,本文将小波变换和神经网络相结合构成小波神经网络用于锅炉故障诊断。实验结果表明,小波神经网络充分继承了小波变换和神经网络的优点,该方法具有良好的故障诊断能力,在故障诊断的准确度上明显地优于BP神经网络。  相似文献   

8.
提出了一种基于小波分析和神经网络的电路故障诊断方法.首先用PSPICE(Simulation Program with Integrated CircuitEmphasis,即集成电路编程仿真技术)电路仿真软件对电路进行仿真;然后对电路的输出节点电压信号进行小波分解,提取各频段的能量作为故障样本;最后利用神经网络的并行处理结构和非线性映射能力,实现故障诊断.仿真实验结果表明该方法对容差模拟电路故障定位具有较高的准确率,为模拟电路故障诊断技术开辟了一条道路,为模拟电路故障诊断技术开辟了一条道路.  相似文献   

9.
结合小波变换和神经网络技术,本文首先利用小波包对故障信号进行分解,然后将归一化后的数据用于RBF神经网络进行汽轮机转子故障分类.MATLAB实验仿真表明小波分析和RBF神经网络的结合在汽轮机转子常见故障的诊断中是很有效的.  相似文献   

10.
结合小波变换和神经网络的优势给出小波神经网络的结构模型,研究了小波神经网络的学习算法;针对传统算法收敛速度慢等问题,从学习率和引入动量项两个方面对算法进行改进。应用小波网络对滚动轴承的典型故障进行实例诊断。以7216圆锥轴承在实验台上所测取的数据进行网络训练。用振动信号为网络输入向量,给出训练结果。仿真实例表明,采用小波神经网络能够很好地对故障进行分类,其收敛速度明显要快于相同条件BP神经网络,有效地实现了滚动轴承的故障诊断。  相似文献   

11.
研究传感器实时故障诊断问题.首先采用MATLAB2015仿真得到传感器各种典型工作状态下的运行数据样本;其次将这些故障样本作3层小波包分解,分别求出第3层小波包基对应的各频率段的能量,利用这些能量值与正常工作时各频段的能量值之比构造出传感器故障诊断的特征向量;最后构建基于3×3的SOM神经网络的传感器故障诊断算法.测试证明了所提算法的有效性和准确性.  相似文献   

12.
详细阐述了小波神经网络(WNN)的原理、结构,并对传统的BP算法进行了改进。以空调系统传感器故障检测问题为目标,提出了基于WNN的故障诊断方法。通过采集天津博物馆中的传感器数据,对训练好的WNN进行了传感器故障诊断能力的验证,对温度传感器的1℃偏差故障、0.05℃/s速率漂移故障、完全故障、与不同方差下的精度等级下降故障进行了仿真,结果表明:这种方法对传感器故障具有很好的诊断效果。  相似文献   

13.
针对瓦斯传感器故障诊断速度慢、诊断精度不高的问题,以常见的冲击型、漂移型、偏置型和周期型传感器输出故障为研究对象,提出了一种基于减聚类( SCM)与粒子群( PSO)算法优化的RBF神经网络进行模式分类与辨识的瓦斯传感器故障诊断方法。首先,利用三层小波包分解得到各个节点的分解系数,采用一定的削减算法使故障的瞬态信号特征得到加强,获取最优的特征能量谱。再利用SCM ̄PSO算法优化RBF神经网络,使粒子的搜索速度更快,更有利于发现全局最优解。最后通过实验对比分析,该方法具有训练速度快、分类精度高的特点,辨识正确率在95%以上,能够显著提高故障诊断的速度和准确性。  相似文献   

14.
针对抓斗纠偏系统复杂性、不确定性、模糊性的特点,提出基于故障树的模糊神经网络作为抓斗纠偏系统故障诊断的方法。该方法利用故障树知识提取抓斗纠偏系统故障诊断的输入变量和输出变量,引入模糊逻辑的概念,采用模糊隶属函数来描述故障的程度,利用Levenberg-Marquardt优化算法对神经网络进行训练,系统推理速度快、容错能力强,并通过实例分析验证了抓斗纠偏系统模糊神经网络故障诊断的有效性。  相似文献   

15.
基于小波包分析及神经网络的汽轮机转子振动故障诊断   总被引:2,自引:0,他引:2  
根据Bently实验台所采集的碰摩、松动、不对中、不平衡4种典型汽轮机转子振动故障信号,运用小波包分析方法对其进行能量分析并提取故障特征.分析结果表明:小波包分析与信号能量分解的故障特征提取方法,可以获得汽轮机转子振动的故障状态,有较好的故障区分度;另外由于经过小波包分解再重构后所提取的故障特征参数浓缩了汽轮机转子振动故障的全部信息,而BP神经网络具有优良的非线性映射能力,对提取的故障特征参数应用BP神经网络映射,可对汽轮机转子振动故障进行进一步的诊断.诊断结果表明:基于小波包分析及神经网络的故障诊断方法,具有较高的故障识别能力.  相似文献   

16.
非线性电路的神经网络故障诊断方法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对非线性动态电子电路,提出一种基于神经网络的故障诊断方法。通过故障字典的建立,对电路故障响应进行预处理后得到的故障特征作为神经网络的输入,然后利用神经网络对各种状态下的特征向量进行分类决策,对故障类别进行辨识,并对电路进行了可测性分析,从而实现非线性电路的故障诊断。详细的仿真过程及结果表明, 该方法有效地解决了非线性电路辨识难的问题,能较好地对故障模式进行分类,取得了满意的诊断效果。  相似文献   

17.
基于SOM神经网络的三电平逆变器的故障诊断   总被引:3,自引:0,他引:3  
针对三电平逆变器的开路故障,采用一种基于小波包变换与自组织映射神经网络(SOM)的故障诊断方法。测量三电平逆变器的上、中、下桥臂电压进行故障模式的分类,桥臂电压经过小波包分解后进行故障特征向量提取,将故障向量作为SOM神经网络的输入进行故障模式识别。仿真和实验表明,该诊断方法对三电平逆变器故障的分类准确且快速,能够降低检修人员的故障识别难度,有效提高诊断效率,对于实现三电平逆变器的在线故障诊断具有广阔的应用前景。  相似文献   

18.
基于粗糙集与神经网络的故障诊断研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过引入粗糙集理论,利用可辨识矩阵约简算法对故障诊断决策表进行属性约简,剔除其中不必要的属性,然后构造改进的BP神经网络作为粗糙集的后端处理机,构造了基于粗糙集与神经网络的故障诊断模型。仿真结果表明,该方法可以有效地减少输入层个数,简化神经网络结构,减少网络的训练时间,在故障诊断中有良好的应用前景。  相似文献   

19.
小波神经网络在模拟电路故障诊断中的应用   总被引:1,自引:0,他引:1  
介绍了模拟电路故障诊断的神经网络方法及小波神经网络结构和原理,以一带通滤波器为例,提出了一种基于输出灵敏度分析,利用多频测试生成故障特征向量训练小波神经网络进行故障诊断的方法,仿真结果表明小波神经网作为故障分类器具有收敛速度快,诊断准确等特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号