首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The material point method (MPM) fully takes the advantages of both Lagrangian method and Eulerian method, and can be capable of simulating high explosive explosion problems and impact problems involving large deformation and multi-material interaction of different phases. In this paper, MPM is extended to simulate the explosively driven metal problems, and two typical explosive/metal configurations, open-faced sandwich and flat sandwich, are analyzed in detail using MPM, and numerical results are compared with Gurney solution and its corrections. Based on our MPM results, a new correction to Gurney solution is proposed to account for the lateral effects for flat sandwich configuration. MPM provides a powerful tool for studying the explosively driven metal and other explosive problems.  相似文献   

2.
Understanding the impact failure of particles made of brittle materials such as glasses, ceramics and rocks is an important issue for many engineering applications. During the impact, a solid particle is turned into a discrete assembly of many fragments through the development of multiple cracks. The finite element method is fundamentally ill-equipped to model this transition. Recently a so-called material point method (MPM) has been used to study a wide range of problems of material and structural failures. In this paper we propose a new material point model for the brittle failure which incorporates a statistical failure criterion. The capability of the method for modelling multiple cracks is demonstrated using disc particles. Three impact failure patterns observed experimentally are captured by the model: Hertzian ring cracks, meridian cracks, and multi-fragment cracks. Detailed stress analysis is carried out to interpret the experimental observations. In particular it is shown that the experimentally observed dependence of a threshold velocity for the initiation of meridian cracks on the particle size can be explained by the proposed model. The material point based scheme requires a relatively modest programming effort and avoids node splitting which makes it very attractive over the traditional finite element method.  相似文献   

3.
The inherent no‐slip contact constraint in the standard material point method (MPM) creates a greater penetration resistance. Therefore, the standard MPM was not able to treat the problems involving impact and penetration very well. To overcome these deficiencies, two contact methods for MPM are presented and implemented in our 3D explicit MPM code, MPM3D. In MPM, the impenetrability condition may not satisfied on the redefined regular grid at the beginning of each time step, even if it has been imposed on the deformed grid at the end of last time step. The impenetrability condition between bodies is only imposed on the deformed grid in the first contact method, while it is imposed both on the deformed grid and redefined regular grid in the second contact method. Furthermore, three methods are proposed for impact and penetration simulation to determine the surface normal vectors that satisfy the collinearity conditions at the contact surface. The contact algorithms are verified by modeling the collision of two elastic rings and sphere rolling problems, and then applied to the simulation of penetration of steel ball and perforation of thick plate with a particle failure model. In the simulation of elastic ring collision, the first contact algorithm introduces significant disturbance into the total energy, but the second contact algorithm can obtain the stable solution by using much larger time step. It seems that both contact algorithms give good results for other problems, such as the sphere rolling and the projectile penetration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a numerical study on contact law between extremely fine particles taking into account of the effect of adhesion force and surface roughness. The adhesion force between two particles is calculated from the Erkoc inter-atomic potential. This force is incorporated into a material point model for the dynamic impact between the two particles. Unlike a molecular dynamics model, atoms in the model are embedded in the continuum solid such that they can only move relatively to each other as the continuum solid deforms. The model is numerically efficient while taking into account of the adhesion effect at the same time. Numerical study using this model shows that the Maugis theory (Maugis, 1992) is valid for spherical particles as small as 50 nm in size. The numerical study also shows that a slight change in surface roughness can alter the impact behaviour completely. Therefore an uncertainty in using the Maugis contact law for real particles is how to determine the effective specific surface energy for particles of different surface roughness. Because of the uncertainty, full numerical analysis may have to be used to obtain the adhesive contact law.  相似文献   

5.
为降低岩石粉状乳化炸药的爆速,选择了一种HW矿物粉,通过筛混方式将该分散剂与炸药混合,并测定了该分散剂加入量和布药厚度对炸药爆速的影响。结果表明,岩石粉状乳化炸药中掺入44.5%50%的HW矿物粉时,爆速为1913m/s50%的HW矿物粉时,爆速为1913m/s2378m/s,经钢与不锈钢板爆炸焊接试验表明,爆炸结合率达100%,可满足金属爆炸焊接用炸药的要求。  相似文献   

6.
为降低岩石粉状乳化炸药的爆速,选择了一种HW矿物粉,通过筛混方式将该分散剂与炸药混合,并测定了该分散剂加入量和布药厚度对炸药爆速的影响。结果表明,岩石粉状乳化炸药中掺入44.5%~50%的HW矿物粉时,爆速为1913m/s~2378m/s,经钢与不锈钢板爆炸焊接试验表明,爆炸结合率达100%,可满足金属爆炸焊接用炸药的要求。  相似文献   

7.
爆炸复合用炸药是影响爆炸焊接效果的最主要因素,不同的材料和工艺参数对炸药的爆速、比冲量和能量有不同的影响,其中炸药的密度直接影响复板斜碰撞基板的速度和角度。选用低合金高强度结构钢Q345B和工业纯钛TA2为实验材料,通过理论计算与实验研究,得到了一种较为适合钛-钢板爆炸焊接用的炸药配方,并对钛-钢爆炸焊接影响因素进行了探讨。  相似文献   

8.
爆炸复合用炸药是影响爆炸焊接效果的最主要因素,不同的材料和工艺参数对炸药的爆速、比冲量和能量有不同的影响,其中炸药的密度直接影响复板斜碰撞基板的速度和角度。选用低合金高强度结构钢Q345B和工业纯钛TA2为实验材料,通过理论计算与实验研究,得到了一种较为适合钛-钢板爆炸焊接用的炸药配方,并对钛-钢爆炸焊接影响因素进行了探讨。  相似文献   

9.
10.
The aim of this research is to study the influence of explosive characteristics on the weld interfaces of stainless steel AISI 304L to low alloy steel 51CrV4 in a cylindrical configuration. The effect of ammonium nitrate-based emulsion, sensitized with different quantities and types of sensitizing agents (hollow glass microballoons or expanded polystyrene spheres) and Ammonium Nitrate Fuel Oil (ANFO) explosives on the interface characteristics is analyzed. Research showed that the type of explosive and the type and proportion of explosive sensitizers affect the main welding parameters, particularly collision point velocity. The morphology of the wavy weld interfaces, chiefly the amplitude and length of the waves, is affected both by the impact velocity and the type and particle size of the explosive sensitizers, and increases with particle size. All the weld interfaces, except welds done with ANFO, displayed localized melted and solidified regions, whose chemical composition resulted from the contribution of both flyer and base metal.  相似文献   

11.
The aim of this study was to investigate the strength of explosive welded metals with the same chemical compositions. Different welding interfaces (straight, wavy and continuous solidified-melted) were used with changing explosive welding parameters [stand-off distance (s), explosive loading (R) and anvils]. Joined metals were investigated under heat-treated and untreated conditions. Results on the microstructure, microhardness, tensile shear strength and bending tests are reported. According to the experimental results, the effect of the anvil on the explosive welding process was only the joining or not-joining performance. It was shown that the bonding interface changed from a straight to a wavy structure when the explosive loading and stand-off distance were increased. For wavy interfaces, when the explosive loading was increased the wavy length and amplitude increased. Results of tensile shear and bending tests showed that heat-treated specimens have more strength than untreated samples. According to tensile shear test results, straight and wavy interfaces had similar strength. In addition, in bending tests of untreated specimens it was shown that the bending zone had some cracks.  相似文献   

12.
为了保证金属复合材料的爆炸焊接质量,对爆炸焊接过程中的爆轰荷载大小起着决定性作用的炸药量及布药方式进行了探索。应用AUTODYN非线性显式动力学分析软件,模拟了基、复板爆炸焊接复合过程,得到了不同炸药量下爆炸焊接过程中的压力时程,结合理论公式,分析炸药量、爆轰荷载、碰撞速度和界面波状之间的关系,及炸药量对爆炸焊接界面波的影响。并在复板上、下表面等间距各设置了8个关键点,比较了炸药厚度均匀布药方式和厚度递减布药方式产生的波状形态。结果表明,在可焊性窗口内,炸药量多的会产生较大波状结合界面;厚度递减布药方式能够消除均匀布药方式下界面波的不均匀现象,其中方案2的速度波动效果最好。并且已经结合的界面受到后续压力的振动破坏明显降低。  相似文献   

13.
准确预测三波点的位置和揭示三波点的规律,对工程防护和实现弹药的高效损伤有着重要作用。基于LS-DYNA有限元软件,利用数值模拟方法研究了TNT炸药在混凝土地面上形成爆炸冲击波的三波点运动轨迹,并初步揭示了炸高、药量和炸药形状等因素对三波点高度的影响。研究表明:在爆炸场中,爆炸冲击波以炸药为中心向四周传播,三波点轨迹的高度均呈现逐渐增高的变化趋势。不论改变炸药的药量还是炸高,三波点高度的增速在中场(4.07.0 m)都较缓,而进入远场(>7.0 m)增速骤增。当炸药的炸高和药量相同,炸药形状不同时,圆柱状炸药在中场爆炸形成的三波点高度比长方体炸药略高,且高度增速都较缓;而在远场三波点的高度基本相等,且增速急剧上升,趋于定值。与炸药形状的影响相比,炸高和药量对TNT炸药爆炸冲击波的三波点高度的影响较大。  相似文献   

14.
准确预测三波点的位置和揭示三波点的规律,对工程防护和实现弹药的高效损伤有着重要作用。基于LS-DYNA有限元软件,利用数值模拟方法研究了TNT炸药在混凝土地面上形成爆炸冲击波的三波点运动轨迹,并初步揭示了炸高、药量和炸药形状等因素对三波点高度的影响。研究表明:在爆炸场中,爆炸冲击波以炸药为中心向四周传播,三波点轨迹的高度均呈现逐渐增高的变化趋势。不论改变炸药的药量还是炸高,三波点高度的增速在中场(4.0~7.0 m)都较缓,而进入远场(7.0 m)增速骤增。当炸药的炸高和药量相同,炸药形状不同时,圆柱状炸药在中场爆炸形成的三波点高度比长方体炸药略高,且高度增速都较缓;而在远场三波点的高度基本相等,且增速急剧上升,趋于定值。与炸药形状的影响相比,炸高和药量对TNT炸药爆炸冲击波的三波点高度的影响较大。  相似文献   

15.
This paper presents algorithm improvements that reduce the numerical noise and increase the numerical stability of the material point method formulation. Because of the linear mapping required in each time step of the material point method algorithm, a possible mismatch between the number of material points and grid nodes leads to a loss of information. These null-space related errors may accumulate and affect the numerical solution. To remove the null-space errors, the presented algorithm utilizes a null-space filter. The null-space filter shown removes the null-space errors, resulting from the rank deficient mapping and the difference between the number of material points and the number of nodes. The presented algorithm enhancements also include the use of the explicit generalized-α integration method, which helps optimizing the numerical algorithmic dissipation. This paper demonstrates the performance of the improved algorithms in several numerical examples.  相似文献   

16.
The basic defects occuring in explosive clad plates were properly systemized and the reasons of their formation were explained. Cases of cracks and delaminations in explosive clad plates were examined in this work. Various values of tensile stresses coming from loading and unloading waves were analysed, as they were the main reason of defects. The defects were connected with properties of welded materials in the joint area and beyond it. Some practical aspects of this process were shown as well.  相似文献   

17.
This paper presents an investigation of strategies for handling dissipative phase interactions in the context of multi‐field material point method formulations in which each phase is assigned its own motion. Different families of phase interaction strategies using both nodal and particle‐based approaches are developed, and in particular, a new smoothed volume fraction approach is presented that can handle interaction effects in a general and consistent manner while reducing anomalous effects of phase boundaries and grid crossings. The effectiveness of this approach is demonstrated via convergence studies using a fundamental model problem. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
19.
马晓晶  刘克  冯涛 《声学技术》2009,28(4):445-449
旋转声源辐射声场的计算是利用点源模型预测风扇离散噪声的关键所在,对叶片式机械气动噪声的研究具有重要参考价值.提供了在任意边界条件下计算旋转点声源辐射卢场的数值仿真计算方法.将连续的旋转声源离散化,处理为分布于旋转轨迹上的有限个固定点声源.利用离散化处理后的声源,通过边界元法分别计算旋转单极子和旋转点力源的辐射声场.在自由空间内的计算结果与理论解进行了对比验证,得到较为理想的结果:另外进行了有限长圆管内旋转点声源辐射声场的数值计算,由此对不同长度圆管的结果进行对比,分析了管道长度对声场分布以及指向性的影响规律.  相似文献   

20.
The boundary‐value problems of mechanics can be solved using the material point method with explicit solver formulations. In explicit formulations, even quasi‐static problems are solved as if dynamic, which means that waves are reflected at computational boundaries, generating spurious oscillations in the solution to the boundary‐value problem. Such oscillations can be reduced to a level such that they are barely noticeable with the use of transmitting boundaries. Current implementations of transmitting boundaries in the material point method are limited to the standard viscous boundary. The absence of any stiffness component in the standard viscous boundary may lead to an undesirable finite rigid‐body motion over time. This motion can be minimized through the adoption of the transmitting cone boundary that approximates the stiffness of the unbounded domain. This paper lays out the implementation of the transmitting cone boundary for the generalized interpolation material point method. The cone boundary reflection‐canceling tractions can be applied to either the edges or the centroids of material points; this paper discusses the implications of both approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号