首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Hazard and risk assessment in avalanche-prone areas involves estimation of runout distances of potential avalanches. Methods for determination of the runout may be divided into two categories: 1) methods based on statistical approaches such as the well known α-β model or 2) methods based on numerical avalanche models such as the PCM-model or VS-type models (just to name the more traditional ones). Methods in the second group have the advantage that besides the runout distance, velocity and impact pressure distributions along the avalanche track can also be obtained, this being a requisite for meaningful risk assessments. However, the predictive power of dynamical models depends on the use of appropriate rheological models and their parameters.In the statistical α-β model, the maximum runout distance is solely a function of topography. The runout distance equations were found by regression analysis, correlating the longest registered runout distance of several hundred avalanche paths with a selection of topographic parameters.In this paper, we re-evaluate Norwegian and Austrian avalanche data, which served as basis for the α-β model in the respective countries, and additional avalanche data with respect to dynamical measures. As most of those avalanche data originate more or less from extreme events (i.e. avalanches with return periods of the order of 100 years), the dynamical measures may give hints about an appropriate rheology for dynamical models suitable for extreme avalanche events.The analysis raises reasonable doubt whether the classical ansatz for the retarding acceleration of snow avalanches with additive terms involving Coulomb-friction and a velocity-squared dependency, which is used in many avalanche models, is adequate for a physically-based model. Back-calculations of runout distances using a simple block model show a discrepancy between commonly proposed parameter values (and of the underlying rheological models) and the observations.  相似文献   

2.
Jizhong Sun 《Thin solid films》2009,517(18):5512-4298
Ab initio supercell calculations employing the periodic Hartree-Fock formalism are presented of the (0001) α-Cr2O3 surface with a partially or totally Al-substituted external layer. In the simulations a fraction of the Cr atoms at the surface of the chromia slab are replaced by Al atoms, and the Al surface coverage is varied between zero (pure chromia) and 100% (Al-terminated chromia). The surface Al atoms are found to relax inwards considerably, with the magnitude of the relaxation decreasing with increasing Al surface coverage. The calculations also reveal that the surface energy of the slab decreases with increasing Al coverage. Finally, the electronic properties at the surface of the Al-substituted (0001) α-Cr2O3 slabs are investigated. Here the calculations show that the substitution of Cr by Al gives rise to an increase in the covalency of the AlO bonds compared to slabs of pure alumina. In contrast, the influence of the surface Al atoms on the electrostatic potential in the (0001) plane of metal ions is relatively small. These findings support the utilisation of α-chromia substrates for the templated growth of α-alumina, which is consistent with recent experiments.  相似文献   

3.
Thin films of solid electrolyte La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) were deposited by RF magnetron sputtering onto porous La0.7Sr0.3Cr0.5Mn0.5O3−δ (LSCM) anode substrates. The effects of substrate temperature, sputtering power density and sputtering Ar gas pressure on the LSGM thin film density, flatness and morphology were systematically investigated. RF sputtering power density of 7.8 W cm−2, substrate temperature of 300 °C and sputtering Ar gas pressure of 5 Pa are identified as the best technical parameters. In addition, a three-electrode half cell configuration was selected to investigate the electrochemical performance of the thin film. The LSGM film deposited at optimum conditions exhibited a lower area specific ohmic resistance of 0.68 Ω cm−2 at 800 °C, showing that the practicability of RF magnetron sputtering method to fabricate LSGM electrolyte thin film on porous LSCM anode substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号