首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为逐步研究掌握强流负氢离子源技术,“十一五”期间,将完成15-20mA强流负氢多峰离子源的技术研究设计。为此目的,在原有离子源以及参考TRIUMF离子源的基础上,重新设计了1台离子源。本文主要介绍其磁铁的布局设计。  相似文献   

2.
100MeV回旋加速器中心区实验台架工作在2007年取得了重要进展。所有设备已安装、调试完毕,通过分系统和联机调试,从离子源到注入偏转板出口的束流传输效率达到了75%,内靶已出束,取得了初步的实验成果。此实验台架的建成为100MeV强流回旋加速器的磁场、高频、注入、引出、中心区、控制、束流测量等系统的结构设计及束流动力学的验证提供了一个完整的实验平台。中心区实验台架装置示于图1。  相似文献   

3.
100MeV回旋加速器中心区实验台架是用于加速负氢离子的紧凑型回旋加速器装置,它的中心平面磁场分布范围跨度较大,要求作为检测磁场分布和磁场垫补惟一手段的磁场测量应具有很高的精度、稳定性和重复性。  相似文献   

4.
中国原子能科学研究院建成了100 MeV紧凑型强流质子回旋加速器,其引出能量为75~100 MeV,流强为200μA。安装在回旋加速器狭小磁极气隙的中心区与螺旋静电偏转板是关键部件,其结构设计涉及磁场、高频电场、高压静电场、真空、传热等方面。本文介绍了中心区与螺旋静电偏转板的结构设计及使用情况。在设计过程中,采取加大绝缘距离、优化高频连接结构、增加杂散束流阻拦装置等措施,解决了中心区与螺旋静电偏转板在强流注入时可靠工作的问题。本文对螺旋偏转板进行了传热分析,得出了该螺旋偏转板在强流束注入时的温度分布。设计的中心区和螺旋偏转板已安装在加速器上,20μA/100 MeV的引出束流通过了12h稳定性测试,在加速器测试过程中,中心区工作稳定可靠。  相似文献   

5.
中心区的设计在完成对中轨道后需考虑一定相宽内的横向接收度问题。一方面可检验中心区设计的合理性,因为实际加速器中加速的是束流而不是单个粒子:另一方面可为注入线的设计提供拟合条件,使注入系统设计更易于匹配计算,也避免以往采用注入线计算的结果旁轴粒子跟踪的盲目性。  相似文献   

6.
在中国原子能科学研究院提议的串列加速器升级工程中,将建造一台100 MeV强流负氢回旋加速器。作为必要的预先研究,我们计划研制其中心区模型,磁钢度为0.455 T·m。该中心区模型可将负氢离子加速到10 MeV,除了作为强流回旋加速器的先进技术研究外,还可用于生产PET常用的超短寿命放射性核素:~(11)C、~(13)N、~(15)O和~(18)F,由于它的高流强,将会有更高的放射性核素产额,预计一台这样的加速器,将能满足国内任何一个城市对~(18)F的需求。  相似文献   

7.
建立 2 0~ 1 0 0MeV紧凑型回旋加速器轴向注入系统实验台架 ,用以进行提高回旋加速器的注入流强与效率的实验研究。在该实验台架的物理设计与元件设计中 ,主要考虑H- 束从离子源引出后传输到回旋加速器中心区的输运线元件选用、物理参数匹配计算、物理元件设计等问题。设计对象是2 2MeV和 70MeV回旋加速器的轴向注入系统 ,并将两者的布局、元件及几何尺寸、物理参数的选取统一 ,以便于实验台架的建立 ,从而形成适应性强的强流回旋加速器轴向注入系统。整个系统只需做少量调整就可满足能量为 2 0~ 1 0 0MeV的回旋加速器注入要求。  相似文献   

8.
9.
100MeV强流回旋加速器要求引出质子束流强达到200μA,并计划提供脉冲束流。为达到高的平均流强,并具有提供脉冲束的能力,轴向注入系统的设计有两种方案,即对应于1#和2#注入线,如图1所示。  相似文献   

10.
CYCIAE-100MeV回旋加速器非标机械结构主要包括离子源、轴向注入、中心区、高频腔体、频率自动微调、高频功率馈入、剥离靶引出、磁场调谐系统、对中线圈、径向束流探针、真空系统、相位探测系统、磁场测量系统、主线圈、束流诊断系统、束流调试靶、质子管道及传输元件、举升系统、运输安装与调节系统等。  相似文献   

11.
100MeV强流回旋加速器及束流管道系统(CYCIAE-100)工程计划建设1台能量为75-100MeV、质子束流强度200μA的回旋加速器,7条质子束流管道和2条中子束流管道。2006年,重点完成了初步设计,并开展施工设计工作;开始工程重大设备的制造工作;基本完成了研究试验项目。  相似文献   

12.
在100MeV回旋加速器中,高频腔体的频率范围为43~45MHz,Dee电压分布中心区为60kV,大半径区域约为120kV。要求腔体在满足频率要求和Dee电压分布的同时,有良好的机械稳定度和较低的功率损耗。  相似文献   

13.
利用多粒子跟踪程序COMA,来模拟CYCIAE-100的剥离引出过程,并验证由引出剥离程序所定出的剥离点,同时分析研究经剥离膜剥离后的束流参数。  相似文献   

14.
强流回旋加速器静电注入偏转板设计方法研究   总被引:3,自引:3,他引:0  
从离子在回旋加速器静电注入偏转板中的运动方程出发,对注入偏转板完成了了计算机辅助设计,并给出辅助加工数据。计算设计和束流仿真过程全部在PC-486微机上完成,形成一个注入偏转板设计软件包,并且可以与已开发的“智能化回旋加速器主磁铁CAE系统”配套使用,使回旋加速器的整机开发前进了一步。  相似文献   

15.
利用多粒子跟踪程序COMA来模拟CYCIAE-100的加速过程。在束流强度和初始发射度固定的情况下,分析研究加速过程中束团的能散、滑相、相图的变化,发射度的变化,以及束流包络的变化情况。  相似文献   

16.
为改进这台加速器的性能,以适应核物理、核技术实验工作的需要,1978年制定技术改造方案,确定把它改造为扇形聚焦可变能量回旋加速器。经过物理设计与模拟试验、技术设计及工程准备,1982年夏停机拆装调试,1983年按计划出束。改造后的回旋加速器,其能量常数K=40,能把质子加速到30MeV,能区在10~30MeV内可调,并可采用三倍频加速H_2~ 离子,提供2~2.5MeV和6~9MeV的质子。每次换能时间较快,可在2小时以内改变一个能量。  相似文献   

17.
中国原子能科学研究院建成了一台强流质子回旋加速器,其引出能量为100 MeV,流强为200 μA。为减小粒子加速时束流损失的目的,其粒子加速腔内工作真空度要求为6.7×10-6 Pa。由于是紧凑型加速器结构,该加速器能提供给真空系统利用的通路有限,为此主真空系统设计为内置式低温冷板结合商业低温泵的排气方案以增加系统整体的抽气能力。设计、加工完成的真空系统已成功应用于100 MeV强流质子回旋加速器上,为加速器的束流调试和正常供束提供了有利的保障。  相似文献   

18.
中心区的设计中束流发射度的匹配非常重要,因束流匹配将直接影响其在机器内加速过程中的损失情况及引出束流的品质。加速器中心区的聚焦与相位相关,即依赖于相位。因此,要求束流在加速器内的轴向包络最小化的初始发射度是相位的函数。计算中心区的接收度为轴向注入线和偏转板的设计提供匹配条件。对CYCIAE-100回旋加速器的中心区进行轴向接收度的计算研究,分别采用数值和半解析的方法,并对这三种方法进行比较。  相似文献   

19.
利用现有强流负氢离子源实验台架,充分考虑现有注入线和中心区的设计,建立强流脉冲化实验装置,将几十至百keV量级的强流束进行脉冲化,将70MHz(中心实验台架10MeV紧凑式回旋加速器的高频频率)连续波负氢束脉冲化为重复频率1~8MHz,脉冲宽度约为10ns。  相似文献   

20.
作为100MeV回旋加速器的主体部件,主磁铁在CYCIAE-100工程中有着举足轻重的地位。因此,主磁铁被列为串列加速器升级工程技术部的重点工作着力推进。在2007年,主要开展了设计和工程施工。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号