首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
The clusters Mo2O11H10, Mo3O16H14 and Mo7O32H22 of MoO3 (0 1 0) surface were studied by using ab initio HF approaches. The geometry of each cluster was fully optimized at RHF or UHF/MINI/ECP-SBK level of theory. The bonding properties, electronic structures and orbital populations of structurally different oxygens were obtained. It was shown that there exist some differences in the bonding properties between Mo atoms and the different oxygens. The symmetrically bridging oxygens exhibit more ionic feature while the terminal oxygens are more covalent. Moreover, information on explaining the active sites for the insertion of oxygen into allylic species in the second step of the oxidation processes of propylene to acrolein could be inferred from the frontier orbital populations of MoO3 surface cluster.  相似文献   

3.
Different aspects of quantum chemical modelling of catalytic systems are discussed. Further, the electronic structure of various VnOm clusters representing the vanadium pentoxide (010) surface is studied and the reactivity of different surface oxygen sites with respect to adsorption of hydrogen as well as propylene is examined. Results of ab initio HF and DFT calculations are compared with those of the semiempirical INDO-type method. It is found that the different quantum chemical methods lead to the same qualitative results. Satisfactory convergence in cluster properties is achieved for clusters of ten vanadium atoms. The saturation of dangling bonds by hydrogen atoms does not influence the properties of the oxygen centers significantly. Among different oxygen centers the oxygens bridging two bare vanadium atoms are most negatively charged. Hydrogen binds to all inequivalent oxygen sites with the strongest binding occurring for oxygens bridging two vanadium atoms. INDO cluster studies for propylene adsorption/reaction on V2O5 (010) show that different approaches of the molecule to the surface yield different surface complexes which can then react to form different products.  相似文献   

4.
The mechanism of the partial oxidation of methane to formaldehyde with O2 has been investigated on bulk and differently loaded silica supported (4–7 wt%) MoO3 and (5–50 wt%) V2O5 catalysts at 600–650°C in a pulse reactor connected to a quadrupole mass spectrometer. The reaction rate and product distribution in the presence and in the absence of gas-phase O2 have been evaluated. On bare SiO2, low and medium loaded silica supported MoO3 and V2O5 catalysts the reaction proceeds via a concerted mechanism involving the activation of gas-phase oxygen on the reduced sites of the catalyst surface as proved by the direct correlation between catalytic activity and density of reduced sites evaluated in steady-state conditions, while on highly loaded catalysts as well as on bulk MoO3 and V2O5 the reaction rate drops dramatically and the reaction pathway via redox mechanism becomes predominant. The results indicate that the surface mechanism is essentially more effective than the redox mechanism enabling also a higher selectivity to HCHO.  相似文献   

5.
The electronic structure and bonding at different oxygen sites of MoO3(0 1 0) and (1 0 0) surfaces is reviewed on the basis of ab initio density functional theory (DFT-LCGTO) cluster calculations. The clusters are chosen as finite sections of the ideal MoO3 surface where cluster embedding is achieved by bond saturation with hydrogen terminator atoms yielding clusters up to Mo7O30H18. Resulting charge density distributions and binding properties are analyzed by populations, bond orders, and electrostatic potential maps. Interatomic binding at the surface is determined by both ionic and covalent contributions with a clear distinction between terminal oxygens and different bridging surface oxygens. Electronic differences between the MoO3 (0 1 0) and (1 0 0) surfaces are found to be mainly due to the different atom arrangement while local atom charging and binding properties seem surface independent. The electronic surface parameters influence the behavior and reactions of adsorbed molecules as will be shown for H, OH, and C3H5 adsorbates.  相似文献   

6.
Single crystals of V2O5 and Li0.03V2O5 were imaged in ambient conditions by atomic force microscopy (AFM). Atomic-scale resolution images are compared with total electron-density plots of the surface calculated using the ab initio HartreeFock method. The calculated oxygen charge at the V2O5(0 1 0) surface suggests an increased local reactivity of the bridging oxygens with respect to electrophilic attacks by adsorbate molecules. The intercalation of lithium has no consequence on the reactivity of the surface. This is supported by results from electrostatic potentials calculated from the cluster charge distributions.  相似文献   

7.
MoO3 and V2O5 thin films were prepared on glass substrates by Spray Pyrolysis technique at a substrate temperature of 423 K. The precursor solutions were obtained by varying the concentrations of MoCl5 and VCl3 in bi-distilled water. The structural investigation conducted by X-ray diffraction showed that MoO3 and V2O5 thin films were polycrystalline with orthorhombic structure. The optical properties studied in the 300–2500 nm range suggest that the thin film behaviours are related to bound electronic states. The optical band gaps have been estimated from slopes of ln() versus plots of MoO3 and V2O5 films were 3.35 and 2.44 eV, respectively. The electrical conductivity was measured using four probes method.  相似文献   

8.
A novel TiO2/Al2O3/cordierite honeycomb-supported V2O5–MoO3–WO3 monolithic catalyst was studied for the selective reduction of NO with NH3. The effects of reaction temperature, space velocity, NH3/NO ratio and oxygen content on SCR activity were evaluated. Two other V2O5–MoO3–WO3 monolithic catalysts supported on Al2O3/cordierite honeycomb or TiO2/cordierite honeycomb support, two types of pellet catalysts supported on TiO2/Al2O3 or Al2O3, as well as three types of pellet catalysts V2O5–MoO3–WO3–Al2O3 and V2O5–MoO3–WO3–TiO2 were tested for comparison. The experiment results show that this catalyst has a higher catalytic activity for SCR with comparison to others. The results of characterization show, the preparation method of this catalyst can give rise to a higher BET surface area and pore volume, which is strongly related with the highly active performance of this catalyst. At the same time, the function of the combined carrier of TiO2/Al2O3 cannot be excluded.  相似文献   

9.
A series of SiO2-supported MoO3, V2O5, and Pt catalysts were prepared for the study of model soot oxidation with simulated diesel exhaust gas. Composite samples of Pt with the metal oxides demonstrated higher oxidation activities than the single-component SiO2-supported MoO3, V2O5 or Pt catalysts in the absence of SO2 in the reactant gas. Based on the effects of NO2 on carbon oxidation, a synergistic reaction mechanism was suggested to explain the effects of combining Pt with the oxides: Pt catalyzes the oxidation of NO with gas phase O2 to NO2, while MoO3 and V2O5 catalyze the oxidation of carbon with NO2. Finally, the effects of SO2 on the carbon oxidation reaction were examined and discussed.  相似文献   

10.
A number of supported metal oxide catalysts were screened for their catalytic performance for the oxidation of carbon black (CB; a model diesel soot) using NO2 as the main oxidant. It was found that contact between the carbon and catalyst was a key factor in determining the rate of oxidation by NO2. Oxides with low melting points, such as Re2O7, MoO3 and V2O5 showed higher activities than did Fe3O4 and Co3O4. The activities of MoO3 and V2O5 on various supporting materials were also examined. MoO3/SiO2 was the most active catalyst among the supported MoO3 examined, whereas, V2O5/MCM-41 showed the highest activity among the supported V2O5. Different performances of the supported MoO3 catalysts were explained by the interaction of MoO3 with the supports: a strong MoO3/support interaction may result in a poor mobility of MoO3 and a poor activity for oxidation of carbon by NO2. The high activity of V2O5/MCM-41 was associated with its catalysis of the oxidation of SO2 by NO2 to form SO3, which substantially promotes oxidation of carbon by NO2. Addition of transition metal oxides or sulfates to supported MoO3 and V2O5 was also investigated. Combining MoO3 or V2O5 with CuO on SiO2, adding VOSO4 to MoO3/SiO2 or MoO3/Al2O3 and adding TiOSO4 or CuSO4 to V2O5/Al2O3 improved the catalytic performance.  相似文献   

11.
Reactivity of V2O5&z.sbnd;WO3TiO2 de-NOx catalysts by transient methods   总被引:1,自引:0,他引:1  
The reactivity of ternary V2O5&z.sbnd;WO3TiO2 de-NOxing catalysts with compositions similar to those of commercial catalysts (WO3 ca. 9% w/w, V2O5 < 2% w/w) is investigated by transient techniques (temperature programmed desorption, TPD; temperature programmed surface reaction, TPSR; and temperature programmed reaction, TPR). The results indicate that the reactivity of the ternary catalysts in the SCR reaction increases on increasing the vanadia loading, and that the ternary catalysts are more active than the corresponding binary vanadia-titania samples with the same V2O5 loading. Indeed the SCR reaction is monitored at lower temperatures and high NO conversions are also preserved at high temperatures. TPSR and TPR data show that at low temperatures the SCR reaction occurs via a redox mechanism that involves at first the participation of the catalyst lattice oxygen and then the reoxidation of the reduced sites by gas-phase oxygen. Based on TPSR and TPR data, the higher reactivity of the ternary catalysts has been related to their superior redox properties, in line with previous chemico-physical characterisation studies. The catalyst redox properties thus appear as a key-factor in controlling the reactivity of V2O5&z.sbnd;WO3TiO2 de-NOxing catalysts at low temperatures. The results also show that at high temperatures the surface acidity plays an important role in the adsorption and activation of ammonia.  相似文献   

12.
The inhibition effect of H2O on V2O5/AC catalyst for NO reduction with NH3 is studied at temperatures up to 250 °C through TPD, elemental analyses, temperature-programmed surface reaction (TPSR) and FT-IR analyses. The results show that H2O does not reduce NO and NH3 adsorption on V2O5/AC catalyst surface, but promotes NH3 adsorption due to increases in Brønsted acid sites. Many kinds of NH3 forms present on the catalyst surface, but only NH4+ on Brønsted acid sites and a small portion of NH3 on Lewis acid sites are reactive with NO at 250 °C or below, and most of the NH3 on Lewis acid sites does not react with NO, regardless the presence of H2O in the feed gas. H2O inhibits the SCR reaction between the NH3 on the Lewis acid sites and NO, and the inhibition effect increases with increasing H2O content. The inhibition effect is reversible and H2O does not poison the V2O5/AC catalyst.  相似文献   

13.
The surface properties of a series of V2O5 catalysts supported on different oxides (Al2O3, H–Na/Y zeolite, MgO, SiO2, TiO2 and ZrO2) were investigated by transmission electron microscopy and FTIR spectroscopy augmented by CO and NH3 adsorption. In the case of the V2O5/SiO2 system TEM images evidenced the presence of V2O5 crystallites, whereas such segregated phase was not observed for the other samples. VOx species resulted widely spread on the surface of Al2O3, H–Na/Y zeolite, MgO and SiO2, whereas on TiO2 and ZrO2 they are assembled in a layer covering almost completely the support. Furthermore, evidences for the presence in this layer of V–OH Brønsted acid sites close to the active centres were found. It is proposed that propene molecules primarily produced by oxydehydrogenation of propane can be adsorbed on this acid centres and then undergo an overoxidation by reaction with redox centres in the neighbourhood. This features could account for the low selectivity of V2O5/TiO2 and V2O5/ZrO2 catalysts.  相似文献   

14.
Two series of catalysts, V2O5/TiO2 and modified V2O5/TiO2, were prepared with a conventional impregnation method. They were tested in the selective oxidation of toluene to benzoic acid under microwave irradiation. The reaction conditions were optimized over V2O5/TiO2. It was found that in the microwave catalytic process the optimum reactor bed temperature of the titled reaction decreases to 500 K (600 K in the conventional process). The modification of V2O5/TiO2 with MoO3, WO3, Nb2O5 or Ta2O5, which has no negative influence on the reaction in the conventional catalytic process, can greatly promote the catalytic activities in the microwave process, leading to a high yield of benzoic acid (41%). The effects of microwave electromagnetic field on the catalysts are discussed.  相似文献   

15.
A characterization study on a practice-oriented V2O5/WO3–TiO2 SCR catalyst deactivated by Ca and K, respectively, was carried out using NH3-TPD, DRIFT spectroscopy, and XPS as well as theoretical DFT calculations. It was found from NH3-TPD experiments that strongly basic elements like K or Ca drastically affect the acidity of the catalysts. Detailed DRIFT spectroscopy experiments revealed that these poisoning agents mostly interact with the Brønsted acid sites of the V2O5 active phase, thus affecting the NH3 adsorption. Moreover, these experiments also indicated that the V5+ = O sites are much less reactive on the poisoned catalysts. XPS investigations of the O 1s binding energies showed that the oxygen atoms of the V5+ = O sites are affected by the presence of the poisoning agents. Based on these results and on DFT calculations with model clusters of the vanadia surface, the poisoning mechanism is explained by the stabilization of the non atomic holes of the (0 1 0) V2O5 phase as a result of the deactivation element. Consequently, V–OH Brønsted acid sites and V5+ = O sites are inhibited, which are both of crucial importance in the SCR process. The deactivation model also gives an explanation to the very low concentrations of potassium needed to deactivate the SCR catalyst, since one metal atom sitting on such a non-atomic hole site deactivates up to four active vanadium centers.  相似文献   

16.
Isotopic oxygen exchange experiments were carried out on simple oxides (Sb2O4, MoO3 and SnO2) and mechanical mixtures of MoO3 or SnO2(acceptor phase) with Rh//Al2O3 or Sb2O4 (donor phase). With Rh//Al2O3 a synergy effect is found: the amount of oxygen exchanged on the mixture is higher than the sum of oxygen exchanged on the two separate phases. This is a prove of oxygen mobility between donor and acceptor phases. With Sb2O4 this effect is less marked suggesting that the presence of a reducer gas is required. In presence of hydrocarbon, no isotopic exchange is observed: only total oxidation occurs. The presence of Sb2O4 decreases the rate of total oxidation by blocking, by oxygen spillover, the most active sites for oxidation.  相似文献   

17.
The reduction of nitrogen monoxide by propene on V2O5/ZrO2 doped with or without calcium has been studied by FTIR spectroscopy as well as by analysis of the reaction products. Considerable promoting effect of calcium doping on the reduction of nitrogen monoxide by propene was observed on the V2O5/ZrO2 catalysts. For the reaction of a mixture of NO+C3H6, carbonyl and carboxylate species were observed above 373 K, although nitrate species formed at room temperature on V2O5/ZrO2 doped with calcium. No bands due to a compound including both carbon and nitrogen atoms were observed. Thus, the redox mechanism, i.e. propene reduces the catalyst and nitrogen monoxide oxidizes the catalyst, is confirmed on V2O5/ZrO2 catalysts doped with or without calcium. The analysis of the V=O band in the region of 1100–900 cm−1 indicates that this promotion is mainly due to new V=O species formed by the addition of calcium onto the catalyst. This species is easily reproduced in comparison with the other V=O species on the surface in the reoxidation process of the catalyst.  相似文献   

18.
The physico-chemical characteristics and the reactivity of sub-monolayer V2O5-WO3/TiO2 deNOx catalysts is investigated in this work by EPR, FT-IR and reactivity tests under transient conditions. EPR indicates that tetravalent vanadium ions both in magnetically isolated form and in clustered, magnetically interacting form are present over the TiO2 surface. The presence of tungsten oxide stabilizes the surface VIV and modifies the redox properties of V2O5/TiO2 samples. Ammonia adsorbs on the catalysts surface in the form of molecularly coordinated species and of ammonium ions. Upon heating, activation of ammonia via an amide species is apparent. V2O5-WO3/TiO2 catalysts exhibits higher activity than the binary V2O5/TiO2 and WO3/TiO2 reference sample. This is related to both higher redox properties and higher surface acidity of the ternary catalysts. Results suggest that the catalyst redox properties control the reactivity of the samples at low temperatures whereas the surface acidity plays an important role in the adsorption and activation of ammonia at high temperatures.  相似文献   

19.
To get the low temperature sulfur resistant V2O5/TiO2 catalysts quantum chemical calculation study was carried out. After selecting suitable promoters (Se, Sb, Cu, S, B, Bi, Pb and P), respective metal promoted V2O5/TiO2 catalysts were prepared by impregnation method and characterized by X-ray diffraction (XRD) and Brunner Emmett Teller surface area (BET-SA). Se, Sb, Cu, S promoted V2O5/TiO2 catalysts showed high catalytic activity for NH3 selective catalytic reduction (NH3-SCR) of NOx carried at temperatures between 150 and 400 °C. The conversion efficiency followed in the order of Se > Sb > S > V2O5/TiO2 > Cu but Se was excluded because of its high vapor pressure. An optimal 2 wt% ‘Sb’ loading was found over V2O5/TiO2 for maximum NOx conversion, which also showed high resistance to SO2 in presence of water when compared to other metal promoters. In situ electrical conductivity measurement was carried out for Sb(2%)/V2O5/TiO2 and compared with commercial W(10%)V2O5/TiO2 catalyst. High electrical conductivity difference (ΔG) for Sb(2%)/V2O5/TiO2 catalyst with temperature was observed. SO2 deactivation experiments were carried out for Sb(2%)/V2O5/TiO2 and W(10%)/V2O5/TiO2 at a temperature of 230 °C for 90 h, resulted Sb(2%)/V2O5/TiO2 was efficient catalyst. BET-SA, X-ray photoelectron spectroscopy (XPS) and carbon, hydrogen, nitrogen and sulfur (CHNS) elemental analysis of spent catalysts well proved the presence of high ammonium sulfate salts over W(10%)/V2O5/TiO2 than Sb(2%)/V2O5/TiO2 catalyst.  相似文献   

20.
We investigated the suppression of SO2 oxidation activity by vanadium oxide in Pt-based diesel oxidation catalyst using reaction experiments, temperature programmed desorption (TPD), infrared (IR) and X-ray photoelectron spectroscopy (XPS). There was no interaction between Pt and S indicated by the XPS results. SO2 was not adsorbed on Pt at room temperature indicated by the absence of peak arising from SO2 in SO2 TPD spectra. SO2 molecules were adsorbed on the hydroxyl groups of TiO2 and migrated to Pt particles to react with oxygen adsorbed on it. V2O5 decreased the adsorption of SO2 on TiO2 by the blockage of V2O5 on TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号