首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为解决现有旋磁激励压电俘能器动磁铁与定磁铁正对激励时易发生碰撞的问题,提出一种错位旋磁激励的压电俘能器,并进行了磁力耦合仿真分析以及动磁铁转速/径向激励距离/压电振子端部附加质量等对俘能器发电性能影响的测试试验。结果表明:动定磁铁错位配置可实现压电振子的有效激励,且存在多个使输出电压出现峰值的最佳转速;径向激励距离对最佳转速无影响,但对峰值电压影响较大,正/负向分别存在不同的最佳激励距离使峰值电压最大;附加质量及动磁铁数量对俘能器性能影响较大,随着附加质量增大,各阶最佳转速降低、电压峰值增大;随着动磁铁数量增加,最佳转速的阶数、转速值及其所对应的电压值都依次减小。  相似文献   

2.
针对现有旋转式压电俘能器存在的问题以及旋转机械监测系统的自供电需求,提出一种旋磁激励式预弯梁压电俘能器。建立了俘能器动态响应模型,通过数值仿真和试验方法获得了转速、磁铁数量比、压缩比及负载电阻对其输出性能的影响规律。结果表明,磁铁数量比对激振力作用形式、最佳转速、谐振峰数及输出电压(振幅放大比)均有影响;激振力形式随磁铁数量比增大由脉冲激励逐渐变为正偏置的三角波激励;随着磁铁数量比的增加,谐振峰数量及最佳转速减小,存在最佳磁铁数量比使得输出电压(振幅放大比)最大;压电振子预弯装配后俘能器可实现等应变发电,适当增大压电振子的压缩比可降低俘能器轴向刚度提高俘能器在低转速域内的输出能力,最佳转速随压缩比的增加而减小,且相邻谐振峰的间距随着压缩比的增加而减小。压缩比为0.17时的最大输出电压是压缩比为0.02时的1.5倍;当磁铁数量比为0.26,压缩比为0.08,转速为448r/min时输出功率可达1.55mW。  相似文献   

3.
针对多方向振动俘能器对低频、低幅值激励的响应输出性能低等问题,在振动俘能结构中引入非线性磁吸力,提高俘能器的响应频带和能量转换效率。研究了非线性磁振子模型,建立了基于广义Hamilton变分原理的横、纵向振动系统机电耦合模型,对系统动力学方程进行无量纲化并数值求解。搭建了振动俘能器性能测试平台,开展了多场耦合振动俘能器频谱特性及响应输出的分析实验。结果表明,引入磁铁可显著提高系统能量转换效率,当磁铁间距15mm、激励幅值0.5m/s~2时,相比无磁力输入的情况,系统响应电压提高了6倍左右,谐振频率从18Hz降至9.5Hz左右,解决了压电俘能器频带窄、响应频率高及输出电压低等问题。  相似文献   

4.
为了提高低流速水流环境的俘能特性,基于涡激振动原理和压电振动能量采集技术,提出一种磁力增强涡激振动俘能器。该俘能器由压电层合悬臂梁、尾端圆柱绕流体和磁铁组成。首先,通过流?固?电耦合有限元仿真,分析了无附加磁力涡激振动压电俘能器的俘能特性,可知其低流速环境下俘能效率较低;其次,搭建流致振动俘能器实验平台,研究了磁力增强俘能器的俘能特性。实验结果表明:在横斥纵吸磁铁布置情况下,压电俘能器结构的固有频率较低,在较低流速下更容易起振,且达到涡激共振所需的流速范围较低;在磁场力的作用下其振动变形较大,输出电压较高,振动频带较宽;当水流流速为0.5 m/s时,磁力增强压电俘能器的输出功率均方根值达到120 μW,较无附磁情况的压电俘能器提高了57.8%,这表明横斥纵吸附磁式涡激振动压电俘能器在较低流速流场环境中具有更高的俘能效率。  相似文献   

5.
为实现高可靠性及宽频带振动能量的回收,提出了一种单磁耦合式压电振动俘能器。建立了俘能器的动力学方程,采用COMSOL仿真分析了磁铁水平耦合距离d、竖直耦合距离h及耦合角α对势能的影响;设计制作了样机,并进行了试验测试。试验结果表明,俘能器的势能曲线随水平耦合距离d减小由单势阱变为双势阱,且存在较佳的磁铁水平耦合距离(d=11 mm),使双势阱的阱深适中、俘能器的固有频率减小、有效频带变宽;竖直耦合距离h增大对有效频带的影响较小,h≤2 mm时,相较于无磁耦合(NMC)降低了固有频率;仅改变耦合角α时,存在最佳参数组合(d=14 mm、h=6 mm、α=67.5°)使俘能器获得较低的固有频率(16 Hz)和较宽的有效带宽(19.6 Hz),较无磁耦合时的有效带宽拓宽了6 Hz,进而提高了俘能器的发电性能。  相似文献   

6.
提出一种基于线性放大与非线性磁力复合增强的三稳态压电振动俘能器,实现在宽频范围内有效地采集低能轨道振动能量。将质量块和弹簧组成的线性放大机构置于三稳态压电俘能器与基座之间,调节线性放大机构与俘能器之间的质量比和刚度比,使三稳态俘能器获得较大的输入动能从低能轨道运动跳转到高能轨道运动,从而获得更高的输出性能和更宽的工作频带。利用能量法建立了描述该复合压电振动俘能器系统动态响应的非线性机电耦合数学模型;采用动态分岔图仿真研究了系统质量比和刚度比对压电俘能器动态输出性能的影响及其能量俘获机理。实验验证了理论结果的正确性。研究结果表明:合理调节系统质量比和刚度比,复合俘能器可以在低能轨道振动时获得更宽的工作频带和更高的发电能力。与传统刚性基座三稳态压电俘能器相比,实验获得复合压电俘能器的阱间运动频率范围由3~14 Hz扩大到2~21.5 Hz,从低能轨道振动跳转到高能轨道振动所需的激励加速度由13.5m/s2降至5.8m/s2。  相似文献   

7.
为满足远程监测系统的自供电需求,针对现有压电振动俘能器存在的问题,提出一种双磁耦合式压电振动俘能器,通过将压电振子对称安装于辅助悬臂梁两侧构成组合换能器,使压电片在俘能过程中主要受压应力。经建模仿真,获得了定磁铁间距与水平耦合间距对系统势能的影响规律,以及不同激励条件下的系统动力学响应特性。为验证俘能器原理的可行性与仿真结果的正确性,制作了样机并测试了不同条件下俘能器的输出特性。结果表明:激励频率对俘能器输出波形影响较大;选取适当的定磁铁间距和水平耦合间距(11 mm≤d≤12 mm,10 mm≤l≤16 mm),可有效降低俘能器固有频率、拓宽频带且幅频特性曲线较为平坦,进而提高了俘能器的环境适应性和可靠性;激励频率为12 Hz、16 Hz及20 Hz时,试验所获得的最大输出功率分别为1.27 mW、2.88 mW及5.31 mW,其所对应的最佳匹配电阻约为70 kΩ。  相似文献   

8.
建立了双稳态压电悬臂梁俘能器的机电耦合动力学方程,基于磁偶极子模型进行了 2 个磁铁间磁力的计算,根据静态平衡点分析得到了系统发生双稳态运动时的磁铁间距范围。数值仿真分析了环境激励源振动频率发生变化时磁铁间距变化对系统平均输出功率的影响规律,设计制作了磁铁间距可调的双稳态压电悬臂梁俘能装置,并进行了环境激励频率变化条件下的压电悬臂梁振动能量捕获实验。实验结果与仿真分析具有较好的一致性,为提高双稳态压电悬臂梁俘能器的发电性能提供了一种有效途径。  相似文献   

9.
为提高环境监测自供电系统的可靠性及风速适应性,提出一种间接激励式压电风力俘能器,通过圆柱型壳体与风场耦合作用产生的涡激振动间接激励壳体内的压电梁振动发电,具有可靠性高、动态特性调节范围宽等优点。介绍了其结构及原理,并进行了理论和试验研究。结果表明:壳体质量、压电梁质量对风力俘能器输出性能都有较大影响;当俘能器总质量确定时,试验范围内通过增加压电梁质量,减小壳体质量可以有效提高压电俘能器的输出性能;此外,不同风速下存在最佳负载使输出功率最大,且本文试验范围内输出功率及最佳负载均随风速增加而增大,风速为28m/s、电阻600kΩ时所获得的最大输出功率为0.4mW。因此,应根据实际风速范围确定合理的压电梁质量/壳体质量以提高俘能器输出能力。  相似文献   

10.
针对在路面激励,系统阻尼以及惯性负载作用下,纯电动汽车(Electric vehicle,EV)动力传动系统呈现复杂的非线性扭转振动特性,造成EV动力传动系统失稳的问题,考虑永磁同步电机(Permanent magnet synchronous motor,PMSM)制造和安装引起的静态偏心和路面激励引起的动态偏心的影响,建立EV动力传动系统非线性扭振模型,求解并分析无扰动Hamilton系统的平衡点,采用控制变量法分别研究路面激励波动,系统阻尼渐变以及惯性负载跃变对EV动力传动系统非线性扭振特性的影响,得到EV动力传动系统失稳的具体途径和机理。研究表明:分别取路面激励f1、系统阻尼μ1及惯性负载m1作为单一变量,当f1 < 0.23,μ1 > 0.2或0 < m1 < 0.3时,EV动力传动系统表现为稳定的一周期运动;当0.23 < f1 < 0.52,0 < μ1 < 0.2或0.3 < m1 < 0.5时,EV动力传动系统由倍周期分岔通往混沌运动;当0.52 < f1 < 0.62或0.5 < m1 < 0.6时,EV动力传动系统由混沌运动转变为三周期运动;随着路面激励f1或惯性负载m1的进一步增大,即0.62 < f1 < 0.8或0.6 < m1 < 0.85时,EV动力传动系统表现为倍周期运动与混沌运动交替的运动状态,而随着系统阻尼μ1进一步增大,即μ1 > 0.2时,系统始终表现为稳定的一周期运动。  相似文献   

11.
考虑现有旋转发电机无法适应高/匀速旋转运动且振动冲击/噪音大、可靠性低等弊端,提出了一种由旋转磁铁激励的压电俘能器,并从理论及试验两方面研究了旋转磁铁数量(间距)对激振力及压电振子发电特性的影响规律。结果表明,在其它条件确定的情况下,存在使激振力最大的最佳旋转磁铁间隙比(磁铁直径与相邻磁铁间距离之比);间隙比为2时的激振力幅值为间隙比为0和4时的6.2倍。采用2,12,24个旋转磁铁激励发电时,电压-转速特性曲线中均存在多个使输出电压出现峰值的最佳转速,其中最大峰值电压及其所对应的最佳转速分别为29.4,87.2,28.4V和1 282.5,707.5,2451r·min-1;12个旋转磁铁激励的最大输出电压为其它两种情况的3倍。此外,压电振子一次激励所生成电能(波形数量及幅值)还与旋转磁铁数量及转速有关。2个旋转磁铁在低转速时仅能激励出1个较大幅值电压波形,而高转速时可生成4个幅值较大的自由振荡波形;12个磁铁在任何转速下都仅能激励出1个电压波形。实验显示动磁铁数量是影响旋转压电俘能器发电量及输出功率的关键要素。  相似文献   

12.
设计了一种安装在鞋上的压电俘能器(PEH),用于收集人体行走时产生的能量。该俘能器由4根压电悬臂梁和1个弹簧-质量系统组成。弹簧-质量系统能够感知沿径骨轴的加速度激励,并通过磁耦合驱动压电梁振动从而发电。文中通过拟合实验数据获得加速度信号表达式;然后,建立仿真模型,对俘能器的发电性能进行了仿真分析。最后,加工了实验样机,并实验测试了俘能器的发电性能。结果表明,当受到沿胫骨方向的激励时,压电梁在一个步态周期内可被弹簧-质量系统激励多次从而产生多个峰值电压;受到沿胫骨和脚面两个方向激励时,压电梁的发电性能比只受到单一方向激励时好。当步行速度为2~8km/h时,每根压电梁的峰值电压可达到10V。该俘能器能够从人体行走的超低频运动中收集能量,并能够同时收集两个方向的加速度能量,提高了压电梁的发电性能。  相似文献   

13.
基于流固耦合作用的压电液压振动俘能器   总被引:2,自引:1,他引:1  
提出一种基于流固耦合作用的压电液压振动俘能器来实现低频、高强度振动能量回收.介绍了浮能器的系统构成及工作原理并进行了理论及试验研究.理论分析结果表明,压电液压俘能器的性能是由环境振动频率/振动强度、液压缸/压电振子的结构性能参数、流体容积/特性以及系统背压(蓄能器预置压力)等多种要素共同决定的,仅当各要素配置合理时才能实现压电液压俘能器的预期功能.采用外径为60 mm、厚度为0.9 mm的双晶压电振子及外径为16 cm,长度为100 cm液压缸制作了试验样机,并以水为工作介质进行了不同频率/背压/激振器振幅条件下的试验测试.试验结果表明,存在最佳工作频率(8Hz)使压电液压俘能器输出电压最大,且输出电压随系统背压及液压缸振幅的增加而增加.其它条件不变时,0.4 MPa背压下的输出电压是背压0.2 MPa时的1.65倍.  相似文献   

14.
为实现低频/宽频带/高强度振动能量回收及基于能量回收的主动振动控制,提出了一种气体耦合式振动俘能器。介绍了俘能器的系统构成原理,对其能量回收特性进行了理论与试验研究。理论分析结果表明,俘能器的发电能力及特性是由环境振动强度、气缸/压电振子的结构与性能参数、系统质量/背压等多种要素共同决定的;其它条件确定时,存在使电压最大的最佳频率以及使俘能器工作与否的最低临界频率;增加背压/质量可不同程度地提高俘能器的输出电压和有效带宽、降低临界频率,但对最佳频率无明显影响。采用Ф60×0.9mm3双晶压电振子及Ф16×100mm3气缸制作了样机,测试了不同背压及质量时俘能器的电压-频率特性。结果表明,俘能器最佳/临界频率、最大输出电压及有效带宽等与背压/质量关系均与理论分析结果相吻合。不同条件下所测得的最佳频率均为55Hz左右;背压0.4 MPa、质量10kg时所获得临界频率/最大输出电压/对应25V输出电压有效带宽为9Hz/88V/72Hz,分别为质量2.5kg时的0.36倍、2倍和2.2倍。  相似文献   

15.
为解决水下传感器的自供能问题,提出一种潜水式尾流激振压电俘能器。通过推导的俘能器流-固-电耦合场数学模型,结合有限元仿真模型,获得俘能器的流激力。仿真与试验数据具有良好的一致性,验证数学模型和仿真的正确性。对于振动柱直径为15 mm的俘能器,增加固定柱直径可有效提高其输出性能。当两柱中心距为20 mm时,PEH_05_15俘能器输出最大电压为23.36 V,是PEH_00_15俘能器最大输出电压的1.51倍。PEH_05_20俘能器在中心距为15 mm时输出最大电压为41.85 V,同比无固定柱俘能器的输出电压提升了1.21倍。  相似文献   

16.
吴明轩  凌元淮 《机械》2021,48(12):27-35
传统双稳态悬臂梁压电俘能器存在效率低、频带窄的弊端.为了提高俘能频带,本文提出一种并联磁力耦合式压电悬臂梁俘能装置,引入了磁力的耦合及压电片的并联.通过建立集中参数的的数学模型,使用龙格库塔数值仿真法对比分析了简谐激励下并联磁力耦合式压电悬臂梁俘能装置与单悬臂梁双稳态俘能器的运动状态及俘能特性.最后搭建实验平台进行实验验证.结果表明,磁力耦合和并联的加入,使得并联耦合式压电俘能器较传统单悬臂梁俘能器分别在7 Hz与15 Hz具有两个谐振频率,增宽了俘能器的俘能频带,以输出功率大于8×10-6 W为有效频带,则俘能带宽提高约为19%.  相似文献   

17.
目前对双稳态悬臂梁俘能器的研究主要是基于受简谐激励或随机激励。提出Duffing振子混沌振动激励模型,将悬臂梁俘能器固定于Duffing振子上,振子的振动输出作为悬臂梁俘能器的动力输入。振子与悬臂梁俘能器构成一个两自由度非线性振动模型,建立了该模型运动微分方程。分析了单参数变化下,俘能器结构参数对俘能效果的影响。研究表明,在特定的混沌振动形式下,等效阻尼系数、等效刚度系数存在一个合理的取值区间以及最优等效负载电阻,使得俘能器俘能效果较好。  相似文献   

18.
针对现有风致振压电俘能器工作风速范围窄、高风速下振幅过大等问题,提出一种可变形式翼型钝体的风致振压电俘能器,主要由可变形式翼型钝体、悬臂梁以及压电组合梁构成,钝体的弹性翼受风力影响产生形变,从而实现系统振动特性的自我调节,以期提高俘能器的环境适应性。建立了俘能器的COMSOL有限元模型,通过仿真与试验分析了风速对其钝体形状及振动特性的影响,并获得了迎风角和弹性翼厚对俘能器输出性能的影响规律。结果表明:选取迎风角120°和弹性翼厚0.15 mm时俘能器的工作风速范围达到21 m/s,且当风速小于8 m/s时,弹性翼变形较小,系统以驰振为主,输出电压随风速增加而增大;当风速在8~17 m/s时,弹性翼形变量进一步增大,系统由驰振逐渐向涡振转变,输出电压变化较小;当风速在17~25 m/s时,钝体因弹性翼变形过大呈弯弧状,系统以涡振为主,其振幅被有效控制,输出电压随风速增加而减小;存在匹配电阻为250 kΩ时俘能器所产生的最大输出功率为3.78 mW。因此,该风致振压电俘能器在满足结构可靠、起振风速低及风速范围宽条件下同时可输出较大的电能。  相似文献   

19.
该文在通常的双稳态变势能函数压电俘能器中,通过在运动磁铁的两侧分别加装固定磁铁的方式,提出了一种多稳态变势能函数压电俘能器结构。基于扩展的哈密顿原理建立了俘能器的动力学方程,分析了系统的势能函数的变化规律,研究了俘能器在简谐激励下的动力学特性和俘能特性。结果表明,多稳态对称变势能函数压电俘能器在较高的外频激励下具有较好的俘能性能,而多稳态非对称变势能函数压电俘能器在低频的外激励下也具有较好的俘能性能。  相似文献   

20.
为改善线性单频谐振式压电振动能量采集器的输出性能,研制了双自由度宽频压电振动能量采集器样机模型,搭建了样机实验测试平台,研究了系统刚度比和负载电阻等参数对能量采集器输出性能的影响。通过调节系统刚度比,不仅可以拓宽压电振动能量采集器的工作率带,还提高了压电振动能量采集器的输出电压和输出功率。结果表明:在基础振动加速度为40m/s~2和负载电阻为471kΩ条件下,双自由度宽频压电能量采集器的工作频带是单频系统的7倍,最大输出功率是单频系统的4.5倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号