共查询到20条相似文献,搜索用时 0 毫秒
1.
遥感图像建筑物分割广泛应用于城市规划及军事领域,是当前遥感领域的研究热点。针对遥感图像中建筑物之间尺度变化较大、建筑物遮挡、建筑物阴影与建筑物边缘相似所导致建筑物分割精度较低的问题,提出一种并行路径和强注意力机制的卷积神经网络模型。该模型基于ResNet网络残差连接的思想,以ResNet为基础网络提高网络深度,并采用卷积下采样得到并行路径,提取建筑物的多尺度特征,以减少建筑物之间尺度变化的影响。然后加入强注意力机制,增强多尺度信息的融合效果,增加不同特征之间的区分度,抑制建筑物遮挡及建筑物阴影的影响。最后,在多尺度融合特征后加入金字塔空间池化模块,抑制分割结果中建筑物内部孔洞的出现,提高分割精度。在WHU以及Massachusetts Buildings公开数据集进行实验,分别从MIoU,Recall,Precision,F1-score 4个指标对分割结果进行量化比较,在Massachusetts Buildings数据集中MIoU达到72.84%,相较于ResUNet-a提升1.46%,能够有效提高遥感影像中建筑的分割精度。 相似文献
2.
针对小目标烟尘尺寸小、边缘稀薄和U-Net在提取小目标烟尘特征效果不佳等原因导致的烟尘漏检、误检和分割精度低等问题,提出一种基于改进注意力W-Net(IAW-Net)的烟尘图像分割网络。采用注意力机制将U-Net扩展为W-Net,在W-Net的基础上引入改进的注意力机制,增强了小目标烟尘的特征;针对小目标烟尘特点对焦点损失进行改进,增加了小目标烟尘的分割比重。实验结果表明,IAW-Net能够在不影响大目标烟尘分割的基础上更加关注小目标烟尘的分割效果,从而提升了烟尘图像的整体分割能力,相比现有语义分割网络具有更好的分割效果。 相似文献
3.
4.
针对矿井图像灰暗模糊、边缘不清晰等问题,提出了一种融合层次特征和注意力机制的轻量化矿井图像超分辨率重建方法。首先设计一种残差坐标注意力模块,在残差块中融入坐标注意力机制,使网络获得更丰富的高频细节信息;其次采用层次特征融合机制,对不同网络层次的特征信息进行特征融合,促进边缘细节信息的重建。最后,再对融合后的特征进行降维以减少模型计算量和参数量。为了使模型在真实矿井场景中具有更好的泛化能力,构建了一种煤矿井下图像数据集CMUID用于网络模型的训练和测试实验。实验结果表明,本文算法的重建图像质量在客观指标和主观感受上均优于其他对比算法。当缩放因子为4时,与OISR算法相比,在煤矿井下数据集上PSNR和SSIM的平均值分别提升了0.318 5 dB和0.012 6,在公共数据集上PSNR和SSIM的平均值分别提升了0.1 dB和0.003 5;网络模型参数量减少了70.7%。 相似文献
5.
在自动驾驶技术研究中,理解道路场景是提高驾驶安全性的保障.语义分割技术可以在像素级别上,将图片分割成与语义类别相关联的不同图像区域,可以辅助车辆感知、理解周围的道路环境信息,从而提高驾驶安全性.当下流行的语义分割模型Deeplabv3+在分割任务中,存在细小目标被漏分割以及外形相似物体容易被误判等现象,导致分割边界粗糙,精准度降低.针对此问题,在Deeplabv3+网络结构的基础上,结合注意力机制加重分割区域的权重,提出一种改进的Deeplabv3+融合注意力机制的道路场景语义分割方法.首先,在Deeplabv3+编码端引入一组并联的位置注意力模块和空间注意力模块,捕获更多空间上下文信息和高级语义信息.然后,在解码端引入注意力机制恢复空间细节信息,并对数据归一化处理,加快模型收敛速度.将不同方式引入注意力机制的模型分割效果进行对比,在CamVid数据集和Cityscapes数据集上进行了测试.实验结果表明,相比Deeplabv3+,改进后的模型分割准确度平均交并比在两个数据集上分别提升了6.88%和2.58%,效果优于Deeplabv3+.该方法不会明显加大网络计算量和复杂度,具有良好的分割速度和准确性的兼顾. 相似文献
7.
在深度学习下的图像语义分割中,为了探究高层特征对于户外场景语义分割性能的影响,在对高层特征进行分析的基础上,提出了融合高层特征的图像语义分割方法。在目前主流深度学习框架Caffe下搭建的分割模型,并采用斯坦福8类户外场景数据集对模型进行了训练和测试。测试结果验证了该方法的有效性和准确性。 相似文献
8.
语义分割为图像分配像素级稠密标签,对场景理解具有重要作用,是视觉研究核心任务之一,涉及自动驾驶、医学成像等实际应用.现有基于深度神经网络的图像语义分割方法的训练需要大量标记数据,这些数据的收集和标记成本高昂,这很大程度上限制了此类方法的实际应用.为解决此问题,这里使用成本较低的计算机生成并标记的逼真的合成数据训练深度神... 相似文献
9.
由于卷积操作的局限性,现有的皮肤病变图像分割网络无法对图像中的全局上下文信息建模,导致其无法有效捕获图像的目标结构信息,本文设计了一个融入交叉自注意力编码的U型混合网络,用于皮肤病变图像分割。首先,将设计的多头门控位置交叉自注意力编码器引入到U型网络的最后两个层级中,使其能够在图像中学习语义信息的长期依赖关系,弥补卷积操作全局建模能力的不足;其次,在跳跃连接部分引入一个新的位置通道注意力机制,用于编码融合特征的通道信息并保留位置信息,提高网络捕获目标结构的能力;最后,设计一个正则化Dice损失函数,使网络能够在假阳性和假阴性之间权衡,提高网络的分割结果。基于ISBI2017和ISIC2018数据集的对比实验结果表明,本文网络的Dice分别为91.48%和91.30%,IoU分别为84.42%和84.12%,分割精度在整体上优于其他网络,且具有较低的参数量和计算复杂度,即本文网络能够高效地分割皮肤病变图像的目标区域,可为皮肤疾病辅助诊断提供帮助。 相似文献
10.
CT图像肝脏肿瘤分割是进行肝癌前期诊断、肿瘤负荷分析和放射治疗的重要前提。为实现肿瘤的精确自动分割,提出一种融合残差模块和注意力机制的深度U形网络。该网络首先在跳跃连接层中引入一条带有反卷积与激活操作的残差路径和卷积模块,实现图像特征的分离传递以及高级表征,确保跳跃连接层主要传递图像边缘信息和小目标全局信息,其次在解码路径中引入注意力机制,通过将跳跃连接层与反卷积解码获得的特征信息赋予不同权重,进一步增强肿瘤特征,抑制其他无关信息。提出方法在LiTS数据集上获得的全局Dice值高达86.71%,明显高于其他多种现有方法,且相较于其他方法,该方法对于小尺寸、对比度低、边界模糊的肿瘤具有明显的分割优势。 相似文献
11.
针对混凝土表面裂缝分割过程中分割精度低、细微裂缝漏分和背景干扰等问题,提出一种联合线性引导和网格优化的裂缝分割模型。首先,在主干网络中引入多分支线性引导模块,通过自适应单维度池化增强网络对裂缝线性结构的表达能力,让不同区域的裂缝建立联系,增强全局上下文信息感知能力,提高网络分割精度;然后,提出网格细节优化模块,通过分区-优化-合并三步骤,将整个空间域划分为若干个空间网格,提取空间网格中的细微裂缝信息,防止细微裂缝漏分;最后,在主干网络的跳跃连接处嵌入混合注意力模块,在空间和通道双维度突出裂缝特征,减少背景干扰。在Deepcrack537,Crack500和CFD裂缝数据集上,所提模型的IoU值分别达到77.07%,58.96%和56.55%,F1-score值分别达到87.05%,74.19%和72.24%,明显优于大多数现有方法,具有更高的分割精度。 相似文献
12.
点云细粒度语义分割,即物体部件分割,在机械臂控制、智能化装配、物体检测等工业生产中有着重要的应用价值。然而由于点云数据形式散乱,导致物体部件边界处几何特征不明显且计算困难,从而致使细粒度分割精度较低,难以满足生产需求。针对点云的部件级分割,本文提出了增强点云局部显著性特征的细粒度语义分割网,网络中构建了局部数据上下文信息,提高细粒度分割精度。本网络建立了利用几何曲率改进的的最远点采样算法,增强点云局部数据子集特征计算能力;创建多尺度高维特征提取器,提取不同尺度的高维特征;在点云特征计算过程中使用seq2seq的方式,引入注意力机制,融合不同尺度的高维特征,进而获取细粒度语义分割的上下文信息。最终使得细粒度分割精度得到了有效提高,尤其是对边界处的分割效果提升显著。实验结果表明,本网络在ShapeNet Part数据集上的总体交并比达到了85.2%,准确率达到95.6%,且具有一定泛化能力。该方法对三维物体的细粒度语义分割具有重要的意义。 相似文献
13.
14.
由于纹理图像的复杂性和多样性,仅依靠传统的单一特征实现纹理图像分割无法满足其对分割精度的要求。本文提出结合区域划分的多特征纹理图像分割方法。首先,依据像素灰度的空间相关性定义多个纹理特征;然后利用区域划分将图像域划分成不同子区域,待分割同质区域由这些子区域拟合而成;通过分别定义多个特征图像的同质区域之间的异质性势能函数和刻画各子区域邻域关系势能函数来定义全局势能函数,并构建非约束吉布斯概率分布,从而建立纹理分割模型;最后,采用M-H算法采样上述概率分布,从而获得最优图像分割结果。分别对模拟纹理图像、遥感图像、自然纹理图像和SAR海冰图像进行了分割实验,并与利用单一特征得到的分割结果进行对比分析,定性和定量的测试结果验证了算法的有效性。 相似文献
15.
为了保证眼底测量结果的准确性、客观性、可重复性以及实用性,提出了彩色眼底图像自动分割与定量分析的算法。具体步骤如下:首先对彩色视网膜血管图像进行网格划分,其次对包含重要血管信息的网格区域实现Otsu阈值分割,在此基础上对其它相邻网格进行区域生长算法分割,最后由计算机统一处理得到视网膜血管的网络径线。实验结果表明:该算法提取的血管网络径线连续性较好,血管中心线定位准确,抗干扰能力较强,处理速度较快,具有较高的临床应用价值。 相似文献
16.
针对图像超分辨率重建过程中提取低分辨率特征效果较差,大量高频信息丢失导致的边缘模糊和伪影问题,提出了融合多维注意力机制与选择性特征融合作为图像特征提取模块的图像超分辨率重建方法。网络由若干个基本块和残差操作构建模型的特征提取结构,其核心是一种提取图像特征的异构组卷积块,该模块的对称组卷积块以并行的方式进行卷积提取不同通道间的内部信息特征并进行选择性特征融合,互补卷积块通过全维度动态卷积从空域、输入输出维度和核维度捕捉遗漏的上下文信息,对称组卷积块和互补卷积块连接后的特征采用特征增强残差块去除冗余造成干扰的无用信息。模型通过5种消融实验证明其设计的合理性,在Set5,Set14,BSDS100和Urban100测试集上与其他主流的超分辨率重建方法进行对比,峰值信噪比(PSNR)和结构相似性(SSIM)定量数据均有提升,尤其在放大因子为3的Set5数据集上比次优算法CARN-M均提升0.06 dB,结果表明提出模型具有更优的性能指标和更好的视觉效果。 相似文献
17.
为提高机器人在复杂场景中对物体的辨识与定位能力,提出一种基于图像语义分割技术的物体位姿估计方法。将RGBD传感器拍摄的RGB图像放入语义分割网络中,完成对图像的分割与物体分类;将分割出来的目标物体与深度图配准,得到目标物体点云图;将点云图与模型库中的模型运用ICP算法完成对物体的位姿估计。研究结果表明,该方法分割准确率可达82.26%,完成一次位姿估计时间1.35 s。 相似文献
18.
19.
图像语义分割需要精细的细节信息和丰富的语义信息,然而在特征提取阶段,连续下采样操作会导致图像中物体的空间细节信息丢失。为解决该问题,提出一种双分支结构语义分割算法,在特征提取阶段既能有效获取丰富的语义信息又能减少物体细节信息的丢失。该算法的一个分支使用浅层网络保留高分辨率细节信息有助于物体的边缘分割,另一个分支使用深层网络进行下采样获取语义信息有助于物体的类别识别,再将两种信息有效融合可以生成精确的像素预测。通过Cityscapes数据集和CamVid数据集上的实验验证,与现有语义分割算法相比,所提算法在较少的参数条件下,获得了较好的分割效果。 相似文献
20.
眼底血管图像在临床中通常被用于眼部疾病的诊断及监测,其中血管的形态结构能够反映疾病的重要特征,因此,眼底血管图像的分割处理对眼部疾病的诊断和预防具有十分重要的医学意义。针对目前人工智能主流算法中卷积和池化操作会导致很多特征丢失,提取特征时会忽视图像中的空间信息,图像中的细小血管很难分割出来等问题,基于U-net模型进行了相关研究,结合空间注意力模块对空间特征进行细化,同时提出了一种下补偿结构LCSAnet。该结构能够减少网络提取特征信息过程中的特征损失,从而提高分割精度。研究实验在DRIVE数据集上完成,LC-SAnet的分割准确率达到96.97%,F1值达到74.36%。结果证明,LC-SAnet表现出更好的分割性能,对细小血管的结构识别更加准确。 相似文献