首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
圆光栅安装偏心误差是影响圆光栅角度测量精度的关键因素,偏心误差补偿是提高角度测量精度的重要方法。为准确辨识和补偿圆光栅安装偏心误差参数,在建立的圆光栅偏心误差模型基础上提出了一种双读数头平均误差补偿方法,对读数误差进行修正,并对测量与修正模型进行仿真实验。使用正23面棱体与光电自准直仪搭建实验装置,对所提方法的测量补偿效果进行验证。实验结果表明:采用所提出的补偿修正方法能够有效补偿圆光栅读数头读数偏差,圆光栅的测角精度达到1″以内。  相似文献   

2.
转台工作面角位置测量装置误差分析与补偿   总被引:1,自引:0,他引:1       下载免费PDF全文
针对特定转台轴端角位置检测误差不能反映实际产品工作面空间角位置的问题,介绍了一种以圆光栅和水平电容传感器作为测角元件的转台工作面空间角位置定位测量装置。以提高空间测角精度为目的,重点对装置各项误差因素进行归类分析。除光栅和传感器分别存在的分系统测角误差外,测量装置还存在转轴与测量基面不平行、传感器敏感轴与测量基面不平行等误差项。为修正测角系统误差,根据圆光栅旋转面、传感器敏感轴、转轴轴系、测量基面的空间几何关系建立数学模型,分析系统误差影响因素。最后利用分度误差在0.3″高精度转台对校准装置进行标定,并利用径向基函数(RBF)神经网络建立误差补偿模型,对系统测角精度进行修正,使系统最大误差值由13.75″下降至2.9″,满足了3″以内的测角精度需求。  相似文献   

3.
首先针对引起圆光栅测角系统示值误差的主要来源(光栅盘的偏心及倾斜)进行理论研究,同时提出光栅盘与转动轴的同轴安装方法;利用中国计量科学研究院的全圆连续角度标准装置(测量不确定度为0.05″)对待测圆光栅测角系统直接进行溯源性测试,避免了圆光栅安装过程和间接溯源性测试(多面棱体和光电自准直仪配合校准)过程中引入的仪器误差;其次利用谐波理论分析偏心和倾斜以及其它阶次误差在频谱中的分布;最后针对安装偏心和倾斜造成的误差,进行谐波补偿。实验结果表明,测角系统的示值误差从补偿前的100″减小到了10″,有效消除了光栅盘安装偏心、倾斜造成的稳定可复现的误差谐波成分。  相似文献   

4.
在实际工业应用中,环境温度变化是便携关节式坐标测量机中旋转轴系测角精度的主要误差源。为了消除环境温度对旋转轴系测角精度的影响,本文提出了一种新型圆光栅测角误差补偿方法,即建立含有环境温度影响因子的圆光栅测角误差补偿模型。利用谐波方法建立在特定温度下的圆光栅测角误差补偿模型,利用多项式方法建立谐波系数与环境温度之间的函数关系。最后,以14℃下的实验数据为验证数据,分别代入到传统谐波误差补偿模型和本文提出的模型中。实验结果表明,相对于传统谐波误差补偿模型,使用本文提出的模型补偿后圆光栅的测角精度提高4倍左右,修正后的残差峰峰值在2″以内,能够有效地补偿10~40℃下圆光栅的测角误差。  相似文献   

5.
精密转台角分度误差补偿   总被引:1,自引:0,他引:1  
为了修正精密转台中由圆光栅安装偏心、倾斜等引起的角分度误差,提出一种基于稀疏分解的角分度误差补偿方法。首先,分析了圆光栅安装偏心、倾斜等对精密转台角分度误差的影响。然后,根据圆光栅测角误差中不同阶次误差项的特性,结合稀疏分解思想与谐波分析建立了角分度误差补偿模型,对转台的角分度误差进行补偿。最后,搭建试验平台,采用提出的角分度误差补偿模型对精密转台角分度误差进行修正,验证该方法的有效性。试验结果表明:该方法能够将角分度精度提高2个数量级,对角分度误差最大值为90.85"的转台进行误差补偿后,能够使角定位误差的最大值减小到0.64"。采用该方法进行误差补偿后,能够显著提高角度定位精度,结果满足精密转台角位移的高精度测试要求。  相似文献   

6.
基准圆光栅偏心检测及测角误差补偿   总被引:3,自引:2,他引:3  
为了修正关节测试平台中由圆光栅安装偏心所产生的测量误差,建立了圆光栅偏心测角误差补偿模型并对安装偏心检测方法进行研究。首先,根据圆光栅测角与偏心参数间的几何关系,推导出圆光栅测量误差补偿模型。然后,描述了采用双读数头对比接收正弦信号间相位差,检测偏心参数的方法和原理;通过合成信号的李萨茹图形,检测出关节测试平台内圆光栅的偏心距及偏心方向。最后,根据所推导的偏心测角误差补偿公式对测试系统进行修正。对比实验结果表明:修正后的圆光栅测角精度大幅提高,测量精度提高了近5倍,满足关节测试平台的测量精度要求。  相似文献   

7.
为了实现对精密减速器输入端和输出端角位移的精密测量,建立精密减速器角位移测量系统。对该系统的机械结构、角度测量及标定方法、基于非线性最小二乘法的误差补偿模型进行研究。通过"立式筒状"结构和圆光栅角度传感器"前置"避免了传统检测仪的弱刚度结构和轴系形变对角度测量造成的影响。使用光电自准直仪与24面棱体结合的方式离散标定圆光栅角度传感器的角位移测量误差,研究基于谐波分析的误差补偿方法,对角坐标进行补偿,进一步消除误差。实验结果显示,通过优化检测仪的结构设计,角位移测量精度达到±7″;误差补偿后,角位移最终测量精度达到±2″,满足减速器角位移测量的高精度要求,对类似测角系统也有参考价值。  相似文献   

8.
钱建强  王东生 《仪器仪表学报》2006,27(Z2):1515-1516
研制闭环控制的用于角度标定与测量的分度装置,该装置以永磁直流力矩电机驱动精密轴系主轴的运转带动角度分度盘的转动,以圆光栅测量系统检测主轴的转动角度.由电流环、速度环和位置环组成的闭环控制系统实现零误差分度定位控制.研究圆光栅测量信号处理中信号细分形成的系统非线性误差对分度精度的影响,建立误差修正模型.经检定,系统在±5°的角度范围内分度精度达到±0.2",定位重复性0.06".  相似文献   

9.
码盘检验仪是检测光学编码盘、圆光栅等测角元件各项精度指标的精密测量仪器。本文论述了码盘检验仪研究,设计中的几个主要问题,如精密轴系、光栅基准器等,及提高仪器稳定性的技术措施。同时叙述了仪器精度的鉴定方法。鉴定结果表明:该仪器一次检测的极限误差(±3σ)小于±0.1角秒。  相似文献   

10.
关节臂式坐标测量机角度传感器偏心参数辨识   总被引:6,自引:1,他引:5  
对关节臂式坐标测量机中圆光栅角度传感器分度盘安装存在的偏心误差进行修正,可以有效提高测量机的测量精度。为了实现坐标测量机动态、实时的现场标校,建立了一种六自由度关节臂式坐标测量机的坐标系统,分析了圆光栅分度盘的安装偏心对角度测量的影响,推导了由于偏心引起的测量误差及其修正公式。分析表明,较小的安装偏心便会引起较大的角度测量偏差。以测量机的单点重复测量精度为目标函数,提出了一种基于模拟退火算法的角度传感器偏心参数辨识方法,并将其用于测量机关节圆光栅12个偏心参数的辨识和修正,实验结果表明,修正之后测量机的重复测量精度提高了11.3%。  相似文献   

11.
光栅角编码器误差分析及用激光陀螺标校的研究   总被引:8,自引:0,他引:8  
本文介绍了光栅角编码器的测量原理,对光栅角编码器在使用过程中因安装偏心、安装倾斜、轴承晃动等因素引起的角度测量误差进行了分析,理论分析表明,微小的安装偏心便可引起较大的测角误差,因此,光栅角编码器在实际使用中需要对其进行标校。根据激光陀螺的精度和有分辨率都很高的特点,本文提出了一种用激光陀螺进行光栅角编码器误差测量和标校的新方法,并进行了实验,结果表明,标校后光栅角编码器的测量精度达到了其标称精度。  相似文献   

12.
激光跟踪仪测角误差补偿   总被引:1,自引:0,他引:1  
由于激光跟踪仪的角度测量精度直接影响仪器的测量精度,本文提出了用自准直仪结合多面棱体对跟踪仪金属圆光栅测角误差进行离散标定的方法。研究了基于谐波分析的误差补偿方法,取金属柱面圆光栅测角误差中幅值较大且相位基本不变的谐波分量建立了补偿模型,避免了最小二乘法不收敛的问题。分析了标定测角误差的不确定度,结果显示:水平测角精度补偿前后分别为1.60"和0.90",俯仰测角精度补偿前后分别为4.89"和0.91",精度分别提高了44%和81%,从角秒级提高到了亚角秒级。结果表明,提出的方法可为激光跟踪仪水平和俯仰轴系提供测角误差补偿,对类似测角系统的误差补偿也有参考价值。  相似文献   

13.
孙秀照  雷贤卿  王笑一 《机电工程》2023,(10):1633-1640
误差补偿是提高圆光栅测角精度的常用手段。一些机床和精密仪器由于没有位置测量元件误差补偿功能,无法进行圆光栅的误差在线补偿。针对这一问题,提出了一种中继式的圆光栅测角误差实时补偿方法。首先,分析了圆光栅测角误差的补偿原理,建立了谐波拟合函数和圆光栅测角误差补偿模型;然后,进行了误差补偿模块的硬件选型,设计了以差分芯片为核心的信号转换电路,包括差分信号转单端信号电路和单端信号转差分信号电路,开发了误差补偿模块的嵌入式软件,将所设计的误差补偿模块插入到圆光栅的信号输出通道,建立了基于中继式误差补偿模块的试验系统;最后,采用雷尼绍校准装置采集了圆光栅的原始误差数据,使用谐波函数对测角误差数据进行了拟合,应用误差补偿模型,利用误差补偿硬件模块,对圆光栅测角误差进行了在线补偿试验。研究结果表明:对测角误差最大值为134.59″的圆光栅进行补偿后,其误差最大值可减小到12.62″,可见采用误差实时补偿方法可以显著提高圆光栅测角精度。  相似文献   

14.
圆光栅安装偏心误差对圆光栅编码器的角度测量精度有较大影响,对偏心误差进行补偿可以有效提高测量结果的精度。为了对圆光栅的安装偏心参数进行辨识,建立了双读数头的偏心误差模型,推导出了基于双读数头的圆光栅偏心参数的自标定公式。通过实验利用对径安装的两个读数头对圆光栅的偏心参数进行自标定,求解出了相关的偏心参数,并使用正十二面棱体搭建的实验装置,对自标定参数的补偿效果进行了验证。实验结果表明,用双读数头自标定公式标定出的偏心参数对单读数头的测量结果进行偏心误差补偿后,圆光栅的平均误差从补偿前的0.046 4°减小到了0.003 7°。  相似文献   

15.
针对星上激光通信终端二维转台的精确控制,设计了实时测量转台旋转角度的专用型光电角度编码器。根据星载激光通信终端所需测角系统的设计指标,分别对光电角度编码器的码盘、指示光栅及光电信号的提取方法进行了设计和选择。其中,格林二进制绝对式编码结合高质量的电子学细分,实现了编码器24位的绝对角度测量;四象限矩阵编码方式有效地减小了码盘的径向尺寸;分体读数头式指示光栅较整周玻璃盘大幅度压缩了体积和重量。在室温条件下对安装在星载激光通信终端上的光电角度编码器进行了测角精度检测。结果表明:该测角系统的角度测量精度约为0.7″(优于1.0″)。激光通信终端设备的在轨稳定运行及捕获、跟踪和通信功能的正常发挥,进一步验证了所设计的光电角度编码器测角精度高、抗辐射能力强、工作可靠性高,满足星载激光通信终端设备的应用要求。  相似文献   

16.
为了实现精密平台二维角度的在线检测,提出了一种基于DVD光学头的二维微小角度测量的方法。利用DVD光学头进行角度测量,是基于激光自准直原理,以四象限光电探测器作为检测元件,以固定在被测物上的反射镜作为被测元件进行测量的一种角度测量方法。搭建了基于英国RPI精密转台的实验系统,对测量方法进行了实验测试。结果表明:基于DVD光学读取头设计的二维角度测量装置测量范围为±110″,平均分辨率达到0.2″。该测量方法稳定、可行,且测量装置具有结构紧凑、成本低等特点。  相似文献   

17.
以关节测试系统为研究对象,为了避免系统中由于圆光栅编码盘偏心安装所引起的测量误差,基于Renishaw圆光栅安装要求,列举了引起偏心误差的结构参数,分析了各结构参数对圆光栅安装位姿的影响,通过分析和计算对各结构参数进行了误差分配。最后通过实例计算,验证了误差分配的合理性,得出在满足圆光栅安装条件的前提下,各结构参数所允许的误差范围。实现了通过控制各结构参数误差,确保圆光栅达到安装要求,避免偏心安装引起较大偏心误差。  相似文献   

18.
为了减少角度测量误差、提高含精密轴系的精密仪器的测量精度和精密机械的定位精度,回顾了古典阿贝原则及拓展理论,并将其推广到角度测量领域,定义了测角阿贝误差的概念,测角阿贝误差由阿贝角和阿贝臂共同作用产生。以关节类坐标测量机中精密轴系为例,使用光电自准直仪和平面镜对阿贝角进行测量,进而得到测角阿贝误差,实验结果表明测角阿贝误差是测角误差的重要组成部分,占25.5%,修正测角阿贝误差后,测角精度提高了12.8%,在此基础上,当配合使用多面棱体修正测角误差时,测角精度提高了93.2%。  相似文献   

19.
三点法中测头角位置的精密测量方法   总被引:2,自引:1,他引:1  
研究了三点法圆度及轴系误差测量中测头角位置的精密测量方法。设计了能直接测量非接触电容传感器测头实测状态下的角位置的测角系统,提出了克服测头角位置测量误差及三个测头灵敏度标定误差影响的校正方法。实验表明:采用本文提出的“多刻线”法测角精度优于1′,测头角位置测量误差及三个测头灵敏度标定误差对测量精度的影响可降致最小。  相似文献   

20.
高精度大光栅盘的研制   总被引:2,自引:1,他引:1  
光栅盘是一种自动化的角度测量元件,它具有精度高、分辨率高、使用方便,易于实现自动测量、自动控制等优点,在光电测角仪、跟踪经纬仪、精密雷达、数控机床、计量仪器等领域内应用越来越广泛。大光栅盘是光栅盘中线数较多、精度较高、直径较大的一种品种。研制的高精度大光栅盘的特点是: 1.刻线大于六万; 2.最大直径误差±0.1秒左右(全中误差±0.046秒~±0.078秒); 3.刻划直径大于300毫米。大光栅盘一般用于测角精度很高以致中小光栅盘或感应同步器等其它测角手段无法胜任  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号