首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
电催化还原CO2作为缓解能源危机和全球变暖的有效途径已成为催化领域的研究热点。然而,不同反应途径的氧化还原电位较为接近,使产物的选择性成为电催化还原CO2所需解决的主要问题。迄今为止,在水性电解质中可实现CO2选择性地转化为一氧化碳(CO)和甲酸(HCOOH)。本文简述了电催化还原CO2制CO的机理,包括CO2吸附过程、二电子转移过程和CO脱附过程。从贵金属的晶面设计、形貌调控和表面功能化对反应活性和产物选择性的影响,铁卟啉、钴酞菁和镍三嗪在还原CO2为CO反应中的电子转移途径,非金属碳基材料中杂原子和碳基质间的耦合效应等方面,重点介绍了近年来贵金属催化剂、过渡金属络合物催化剂和非金属碳基材料催化剂的研究进展,总结了各类催化剂的优缺点。指出在三类电催化还原CO2制CO的催化剂中,非金属碳材料具有较高的CO法拉第效率,尤其是非金属碳材料成本较低、制备简单、结构易调控,在电催化还原中具有潜在的应用优势,是有望实现商业化应用的新型催化剂的候选材料之一。  相似文献   

2.
大气中日益增加的CO2浓度导致了气候变化等环境问题。将CO2催化转化为有价值的化学品具有重要意义。利用太阳能、风能等可再生能源产生的电能,通过电化学方法将CO2还原转化为有价值的碳基化合物是最具有应用前景的方式。分子催化剂具有明确的结构和清晰的活性位点,可实现基于机理的性能优化。综述了近年来金属酞菁/卟啉分子在电催化CO2还原为CO的实验和理论方面的最新研究进展。首先,介绍了金属酞菁/卟啉分子电催化CO2还原为CO的详细机理。然后,重点介绍了如何通过分子分散和配体修饰提升金属酞菁/卟啉分子电催化CO2还原为CO的活性和选择性。最后,讨论了金属酞菁/卟啉分子电催化CO2还原存在的挑战及其可能的解决方案。  相似文献   

3.
直接电解碳酸氢盐可避免CO2解吸的高耗能步骤,为将CO2转化为增值化学品提供了一条具有商业前景的路径。寻找廉价、高效的电解碳酸氢盐催化剂以替代贵金属催化剂(如Ag),是一项重要的工作。本研究将Ni-N-C催化剂引入电解碳酸氢盐体系,以活性炭为碳载体制备了具有发达孔隙结构的Ni-N-C催化剂,为电解碳酸氢盐提供了丰富的催化活性位点和充足的物质传输通道。在N2饱和的3.0 mol·L-1 KHCO3溶液中,Ni-N-C催化剂在100 mA·cm-2的电流密度时CO法拉第效率(FECO)为57.2%,相同条件下Ag催化剂的FECO仅为42%。本研究证明了Ni-N-C催化剂在电解碳酸氢盐体系中可以取代Ag将碳酸氢盐转化为CO。  相似文献   

4.
铁基催化剂CO2加氢直接合成烯烃是实现CO2减排及CO2转化与利用的最佳途径之一。目前铁基催化剂的CO2加氢活性及反应过程中铁基催化剂结构强度仍然较低,成为CO2加氢制烯烃产业化生产的重要挑战。通过浸渍法制备一系列负载型铁基催化剂,研究载体材料性质对铁基催化剂结构及CO2加氢直接合成烯烃的影响特性。研究发现,载体可诱导铁基催化剂在CO2加氢反应过程中形成的铁物种,同时影响铁基催化剂表面碳物种的有序度,调变对CO2吸附及活化能力;研究结果表明ZrO2负载的Fe催化剂展现出最佳的CO2加氢合成烯烃催化性能,在温度320℃和反应压力2.0 MPa时,CO2转化率>30%,C2~C7烃类产物中烯烃选择性高达85%以上,烯烷比为8.2,且CO选择性较低为17.1%。  相似文献   

5.
随着全球工业化快速发展,化石燃料大量使用导致碳排放量急剧增加,造成严重环境问题。因此,寻找有效方法降低CO2浓度以遏制全球变暖成为紧迫任务。目前,减少CO2主要策略包括限制传统化石能源使用和将多余CO2转化为高附加值化学品。由于经济发展仍极度依赖化石能源,简单地限制其使用存在显著困难。因此,高效转化CO2成为高附加值化学品显得尤为关键。在众多CO2转化技术(生物还原、热化学加氢还原、光电化学及电化学还原CO2)中,电化学还原CO2因其高效性和良好的工业应用前景而显得尤为突出。基于此,对CO2转化技术、电催化还原CO2原理、主要产物、反应途径、评价参数及目前发展迅速的金属基及非金属碳基材料电催化剂的研究现状进行了综述。金属基和非金属碳基材料的结合能够提高催化剂的催化活性,具有良好的研究前景。从新型高效低成本催化剂开发及其形貌和表面活性位点的微观调控,利用原位表征技术和密度泛函理论计算加深对反应...  相似文献   

6.
采用浸渍和粉末压片的方法制备了两种ZrO2-Al2O3复合载体并用于负载Ni基催化剂,并利用氮气等温物理吸附、X射线粉末衍射(XRD)、H2程序升温还原(H2-TPR)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等分析手段对催化剂物化性质进行表征,考察了ZrO2-Al2O3复合载体制备方法及ZrO2的引入对Ni基催化剂在CO、CO2和CO-CO2共存的3种体系下甲烷化反应活性的影响。材料表征和活性测试结果表明,在CO甲烷化体系中,与单一Al2O3载体相比,引入ZrO2的复合载体能有效提高催化剂中Ni物种的分散度从而增强CO甲烷化过程中催化剂活性,且粉末压片法较浸渍法制备的复合载体能有效提高催化剂的还原度,降低还原温度,但前者会大大降低催化剂的比表面积;在CO2甲烷化体系中,当载体形貌和制备方法相同时,载体的变化对催化剂活性的影响较小,CO2转化率主要受到制备方法不同引起的物理性质如比表面积变化的影响;在CO-CO2共存体系中,由于CO在竞争吸附中比CO2更容易占据活性位点,所以呈现出优先进行CO甲烷化再进行CO2甲烷化、CO2的含量先增多后减少的规律。  相似文献   

7.
CO2甲烷化反应因其可以将温室气体CO2转化为清洁能源(CH4)而受到广泛关注。本文介绍了CO2甲烷化反应的机理与热力学研究进展,分析了CO2甲烷化催化剂活性中心、粒子尺寸和载体效应对催化剂反应性能的影响规律。介绍了高熵合金、溶出型金属等新型催化剂在CO2甲烷化反应中的应用,总结了影响Ni基CO2甲烷化催化剂反应稳定性的2个主要因素(粒子烧结和硫中毒)以及提高Ni基催化剂抗烧结和抗硫中毒的举措(利用限域效应、添加CeO2等),从而为新型CO2甲烷化催化剂的研究和开发提供理论基础。最后,对CO2甲烷化催化剂的研究开发进行了展望。  相似文献   

8.
我国作为煤炭大国,燃烧化石燃料产生大量CO2。通过化学作用将CO2转化为能源燃料、基础化学品或高分子材料,有利于实现碳氧资源综合利用。从CO2直接利用和间接利用的角度出发,分别综述了CO2资源化利用研究进展。直接利用方面,重点阐述了CO2直接加氢合成甲醇和乙醇;同时CO2可作为羰化剂合成有机碳酸酯和高分子材料,包括碳酸二乙酯、聚碳酸酯和CO2基可降解聚合物。在间接利用方面,重点综述了CO2经碳酸乙烯酯的酯交换反应合成碳酸二甲酯,以及碳酸乙烯酯加氢制备甲醇联产乙二醇的研究进展。CO2加氢直接合成甲醇催化剂主要包括铜基催化剂、贵金属催化剂,由于贵金属的成本高,廉价的Cu基催化剂研究较为广泛。CO2加氢直接合成乙醇研究较广泛的催化剂为贵金属(Rh、Pd、Ru)基催化剂体系,还需进一步研究廉价、高活性和高稳定性的催化剂。CO2与乙醇直接合成碳酸二乙酯(DEC)研究较多的催化剂为铈基多相催化剂,但由于生成物中水分的影响,限制了DEC的收率。环氧化物和CO2耦合反应生成DEC过程中不产生水,可以有效克服热力学的限制,因此高能化合物与CO2的耦合路线是高效制备DEC的有效途径。CO2与环氧化物共聚制备聚碳酸酯材料多采用稀土三元催化剂体系,环氧化物的转化率和聚碳酸酯选择性较高,目前已经实现工业应用。CO2通过碳酸乙烯酯与甲醇酯交换合成DMC,多使用碱性较强的催化剂和含碱性基团的离子交换树脂。CO2经碳酸乙烯酯加氢制备甲醇和乙二醇的反应中,铜基催化剂展现出优异的催化性能。CO2化学转化利用是CO2碳氧资源综合利用的重要途径,将有效支撑我国未来碳中和目标实现。  相似文献   

9.
在固定床中考察了不同K2CO3植入浓度和不同温度条件下兰炭催化气化特性。结果表明,5%的催化剂植入浓度主要起到填充孔隙的作用,当植入浓度增加到10%以后,催化剂发生堆积会使颗粒表面及内部形成较多孔隙。提高气化温度可提高兰炭转化率,超过750℃之后碳转化率增幅减缓,催化剂饱和装载浓度为10%。在颗粒表面和开放孔隙中的高浓度C(O)才具有较高的脱附速率,并提高CO生成速率。在非催化条件下,随着气化的进行CO/CO2下降,而H2/(2CO2+CO)先增后减。在催化条件下,H2/(2CO2+CO)稳定在1.5~1.7。催化剂兰炭样品中出现了K2Ca(CO3)2双金属碳酸盐、K2O、KO2等活性组分,并随催化剂植入浓度的增加而增加。催化剂植入浓度的增加会导致失活现象加重,但兰炭在750℃条件下气化1 h 催化剂没有完全失活。  相似文献   

10.
采用分步浸渍法制备了碱/碱土金属修饰Ni基催化剂Ni-M/Al2O3 (M=K2CO3, Na2CO3, MgO, CaO)。探究了碱/碱土金属的添加对改性Ni基催化剂CO2吸附和甲烷化性能的影响。研究发现,碱/碱土金属的添加提高了Ni/Al2O3催化剂表面的碱性活性位点密度,强化了其CO2吸附性能。碱/碱土金属类型影响Ni-M/Al2O3催化剂碱性活性位点的分布、NiO物相的转化及Ni的分散度,进而影响其甲烷化性能。MgO添加使NiO物相转化为与载体呈强相互作用的β型和γ型NiO,降低了催化剂表面的强碱性活性位点比例,有利于CO2吸附活化。Ni-MgO/Al2O3的CO2吸附容量最高为0.68mmolCO2/g,其CO2转化率和CH4选择性分别高达58.4%和95.4%,其在烟气CO2捕集与原位甲烷化中极具应用前景。  相似文献   

11.
CO2是主要的温室气体之一,发展CO2化学转化技术是实现碳达标、碳中和战略目标的关键。利用CO2和甲醇合成碳酸二甲酯(DMC)是近年来的研究热点,其中开发价廉、高效、高稳定性的催化剂是目前的难点。Ce O2因优异的储放氧能力、丰富的氧空位及适宜的表面酸碱性,使得Ce O2基催化剂得到广泛应用。综述了纯Ce O2、负载型Ce O2及Ce O2基复合氧化物催化剂的催化性能,讨论了催化剂晶型和形貌、氧缺陷位及酸碱性对催化效率的影响,为进一步设计优化催化剂提供参考。  相似文献   

12.
二氧化碳甲烷化催化剂的研究进展   总被引:1,自引:0,他引:1  
崔凯凯  周桂林  谢红梅 《化工进展》2015,34(3):724-730,737
CO2催化加氢甲烷化反应是温室气体CO2资源化利用的有效途径之一。本文回顾了CO2催化加氢甲烷化催化剂的研究现状, 其中Ni基催化剂是研究最为广泛的CO2甲烷化催化剂。重点介绍了Al2O3、SiO2和La2O3载体及CeO2和La2O3助剂等对Ni基催化剂CO2甲烷化性能的影响, 阐述了载体的结构、电子性能、化学性能和助剂等对Ni基催化剂CO2甲烷化性能的影响。结合几种非Ni基CO2甲烷化催化剂的对比研究发现, 具有有序介孔结构的Co基催化剂也表现出了优越的CO2甲烷化性能。由此表明, 催化剂新颖的结构也是影响CO2甲烷化性能的重要因素, 通过催化剂结构、组成等的调变, 能实现CO2低温高效甲烷化, 为CO2甲烷化工业化进程奠定基础。  相似文献   

13.
负载型铟基催化剂二氧化碳加氢动力学研究   总被引:2,自引:1,他引:1       下载免费PDF全文
曹晨熙  陈天元  丁晓旭  黄海  徐晶  韩一帆 《化工学报》2019,70(10):3985-3993
探讨了载体对铟基催化剂上CO2加氢动力学的影响。通过浸渍法制备了不同载体的负载型In基催化剂,仅ⅣB族元素(Ti,Zr,Hf)氧化物负载的In基催化剂表现出明显的CO2加氢活性,其中In1/HfO2和In1/ZrO2催化剂具有较高的甲醇选择性,而In1/TiO2催化剂主要起催化逆水气变换反应的作用。通过稳态动力学、高压原位漫反射红外和程序升温实验等动力学手段,证明反应条件下In1/ZrO2和In1/HfO2上的关键表面反应中间体是甲酸盐与甲氧基,甲醇主要通过表面甲酸盐的逐步加氢生成。In1/HfO2具有最强的氢解离与加氢能力,因此最有利于甲醇合成。In1/TiO2在CO2加氢中表面无明显含碳中间物种,高CO选择性可能与界面氧空缺位点促进redox循环以及甲酸盐中间体分解相关。  相似文献   

14.
以CeZrO2固溶体为载体,发现MnOx的添加能促进Pt/CeZrO2催化剂的CO氧化性能,并研究了MnOx含量对催化剂CO氧化活性及抗H2O和CO2性能的影响。结果表明,随着MnOx含量增加,催化剂活性呈现先升高后降低的趋势,在MnOx含量为0.5%(质量分数)时活性最佳。MnOx的添加降低了Pt颗粒尺寸并影响催化剂还原性能从而促进反应活性。水汽和CO2对Pt/CeZrO2催化剂的CO氧化活性有抑制作用,而MnOx的加入能显著提高催化剂的抗水汽和CO2的能力。反应动力学结果表明,在Pt/CeZrO2催化剂上,反应气中引入H2O和CO2后,CO的反应级数有明显升高,说明H2O和CO2在催化剂表面与CO竞争吸附,导致CO反应活性下降;而在Pt/MnOx/CeZrO2催化剂上,CO的反应级数略有升高,说明MnOx的添加能有效抑制H2O和CO2与CO的竞争吸附,从而改善了催化剂的抗H2O和CO2性能。  相似文献   

15.
在“双碳”目标的背景下,明确碳处理路径至关重要。利用可再生能源制得的氢,将二氧化碳(CO2)通过甲烷化反应制备合成天然气(SNG)被广泛认为是一种高效、有前景的碳捕集利用技术,有望实现碳循环利用。近年来,二氧化碳甲烷化催化剂及相关反应机理均取得了许多新进展。鉴于此,本工作对该反应进行了系统的综述。首先,介绍了CO2甲烷化反应的热力学研究中不同反应条件的影响;随后从活性金属、载体、制备方法及辅助技术等四方面介绍了CO2甲烷化催化剂的研究进展,其中活性组分包括非贵金属基(Ni,Fe,Co和Mo)和贵金属基(Ru,Rh,Pt和Pd),载体包括传统氧化物(Al2O3,SiO2,TiO2,ZrO2和CeO2)和新型载体材料(金属有机框架和碳基材料),催化剂制备方法包括传统制备方法(浸渍法、共沉淀法、水热法、溶胶-凝胶法和固相合成法)和合成辅助技术(超声波、微波和等离子体等);总结了CO2  相似文献   

16.
采用等体积浸渍法在Ni基催化剂上添加W助剂制备Ni/W-Al2O3催化剂,探究Ni负载量、W摩尔分数和焙烧温度对催化剂CO选择性甲烷化的影响。利用XRD、N2-物理吸附、H2-TPR、NH3-TPD、CO2-TPD、TEM等对催化剂进行表征。结果表明,有W的催化剂在低温下活性很差,不能提高活性。在Ni负载量为20%、W摩尔分数为0.05、焙烧温度为900℃、空速为4 800 h-1的条件下,反应温度在207~339℃范围内,20%Ni/0.05W-Al2O3-900℃催化剂能使CO出口体积分数始终小于10μL/L,CH4出口体积分数小于2%。  相似文献   

17.
成功合成了2种金属有机框架材料,并探究其在CO2电催化还原反应中的应用。结果表明,二维ZIF-L催化剂的CO2电催化还原活性、选择性和稳定性显著高于ZIF-7。在-1.3 V(vs.RHE)时,CO法拉第效率可达78.5%,是相同电势下ZIF-7的近2倍;CO的电流密度为16.8 mA/cm2,高于文献中报道的Zn基MOFs上CO的电流密度值。二维ZIF-L催化剂独特的孔腔结构有利于CO2的吸附,从而有效催化CO2电还原。  相似文献   

18.
针对Cu/ZnO/Al2O3催化CO2加氢制甲醇反应中,一氧化碳(CO)选择性较高的问题,提出有效降低CO选择性的方法。将该催化剂分散到SiO2载体上,调控催化剂中CuO晶粒在SiO2上的分散度。结合高倍透射电镜(HRTEM)、高角环形暗场像-扫描透射电镜(HADDF-STEM)和X-射线光电子能谱(XPS)等,研究催化剂的形貌结构、表面元素化学状态及铜的分散度等,并评价催化剂性能。结果表明,只改变铜在SiO2上的分散度,就能显著调控CO2加氢的选择性。提高铜晶粒分散度能有效抑制CO的生成,将甲醇和二甲醚的选择性从43.4%提高至71.4%。  相似文献   

19.
相邻活性位点间的协同作用可以促进催化活性,同时保持源自原子分散性质的高原子利用率,双金属位点催化剂正成为CO2还原反应研究中的新领域。锚定在氮化碳上的原子级分散的Ni/Co双金属活性位点,可作为一种高效的CO2电还原催化剂。该催化剂在-0.6~-1.1 V的宽电势范围内表现出优异的选择性(CO法拉第效率超过90%),并且在连续电解40 h后仍保持94%的初始选择性,显示出卓越的稳定性。  相似文献   

20.
谢竺 《硅酸盐通报》2020,39(12):3952-3957
为研究建筑废弃物——锯末木屑在环保中的应用,以NaNH2为活化剂和氮源,利用一步热解法制备了氮掺杂的多孔碳材料,采用X射线衍射、X光电子衍射、氮气吸附-脱附等温线等方法对样品进行表征。结果发现样品主要由微孔构成,大的比表面积和高的氮含量相互协同,为CO2的电化学还原反应提供了丰富的催化活性位点和CO2反应物。电化学测试研究结果发现,样品还原CO2的主产物为CO,在-0.7 V(可逆氢电极,RHE)的过电势下,CO的法拉第效率高达82%,且样品可持续稳定电解18 h。说明以建筑废弃木屑材料制备的多孔碳可有效还原CO2,实现在环保领域中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号