首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
成海龙  车银平 《轮胎工业》2005,25(11):686-689
对245/75R16LT轮胎进行硫化测温,并依据得到的各部位胶料的等效硫化时间和实际硫化程度调整硫化工艺,调整后轮胎各部位胶料硫化程度均一性得到改善,成品轮胎的高速和耐久性能提高,同时,可节约能源,降低生产成本。  相似文献   

2.
轮胎硫化工艺的优选   总被引:1,自引:1,他引:0       下载免费PDF全文
谭德征 《轮胎工业》2005,25(2):109-111
轮胎硫化时间决定成品轮胎的过硫或欠硫,从而影响产品质量。确定轮胎硫化时间可以采用传统方法、硫化测温法或发泡点测定法。通过硫化测温并对轮胎各部件的胶料配方调整后,可使轮胎在硫化过程中各部位胶料基本同时达到正硫化,从而取得最优的硫化效果。  相似文献   

3.
硫化测温技术在轮胎生产中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
庄建东  韩会娟  温科 《轮胎工业》1999,19(3):167-169
用JLW-12型硫化测温仪对现生产的硫化罐硫经9.00-2116PR轮胎进行硫化温度测定,获得了硫化温度在轮胎各部位的变化情况,并以此得到各部位胶料的硫化程度,发现均存在过硫现象,适当调整工艺条件,硫化外温由143℃改为151℃,硫化时间缩短5min后,轮胎机床耐久性能提高显著。  相似文献   

4.
介绍14.00R20越野子午线轮胎的硫化测温过程,绘制测温曲线,利用胶料的活化能和测温数据计算各部位胶料的硫化程度。结果表明:轮胎硫化条件和各部位硫化程度较理想,胎侧中部的硫化程度最大,达到400%以上;胎冠肩部的硫化程度最小,不到100%。  相似文献   

5.
采用有限元分析方法研究23.5R25全钢工程机械子午线轮胎的硫化过程。结果表明:轮胎各部位模拟硫化温度曲线与实测硫化温度曲线的升温趋势接近,最大误差不大于10%,模拟方法可行;同一时刻轮胎各部位温度存在显著差别,其硫化程度不同,物理性能不能同时达到最优;轮胎各部位的硫化历程差别较大,胎肩部位初始硫化速度缓慢,降温速度也较缓慢滞后,存在后硫化现象;降温硫化对轮胎硫化程度影响较大。  相似文献   

6.
采用WL-IV型硫化测温仪,对轮胎硫化过程中的各部位的硫化温度进行测定。对轮胎蒸汽,氮气硫化过程的等效硫化问题进行了分析研究,提出了相应的硫化条件。  相似文献   

7.
全钢载重子午线轮胎的硫化测温   总被引:1,自引:1,他引:0  
介绍11.00R20YS08轮胎的硫化测温过程,绘制测温曲线,并利用测温数据计算各部位胶料的硫化程度.测温结果表明,该规格轮胎硫化条件和各部位的硫化程度较理想,硫化程度最大的部位为气密层和上三角胶,达到350%以上;最小的部位为胎圈包布胶,不到200%.  相似文献   

8.
朱黎峰  罗文超 《轮胎工业》2017,37(4):243-247
为解决轮胎硫化过程中各部位温差大、硫化不均匀、一些部位出现过硫化和外温管道加热不均匀的情况,试验一种新型中心机构和新型硫化模具。优化中心机构的结构和喷射角度,对现有模具外温加热管道进行调整,改变现有模具安装方式,并对模具结构和外温管道进行优化。利用新型中心机构和新型模具能够有效减小硫化过程中轮胎各部位温差,提高轮胎硫化均匀性,缩短轮胎硫化时间,提高轮胎质量。  相似文献   

9.
使用ZLW-16型智能硫化测温仪对9.00—2016PR轮胎进行硫化测温。测温结果表明,与模型和水胎接近的部位升温速率和温度高于中心部位,且由中心到表面形成明显的温度梯度;所测轮胎各部位胶料均存在较大程度的过硫化现象。将胎冠等部位正硫化时间缩短10min,并将三角胶150℃的正硫化时间调整为7min后,9.00-2016PR等载重轮胎的耐久性能提高15-25h,速度性能提高1~2个级别。  相似文献   

10.
轮胎高温硫化条件与胶料硫化特性的关系   总被引:1,自引:1,他引:0  
探讨了轮胎高温硫化条件与各部位胶料硫化特性的关系,确定各部位胶料的硫化特性应满足tz(等效正硫化时间)〉tmin(最短开模时间),t90〈td(总等效硫化时间)〈tmax(最长硫化平坦时间)的设计原则,以及胶料在硫化过程中达到的最高温度应低于或等于胶料可达到的最高温度θmax。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号