共查询到19条相似文献,搜索用时 62 毫秒
1.
基于DCT和KDA的人脸特征提取新方法 总被引:1,自引:0,他引:1
提出了一种新的人脸特征提取方法,该方法采用DCT对人脸图像进行降维和去噪,并通过KDA提取人脸特征。基于该特征,采用NN分类器,对ORL人脸库进行分类识别,仅用28个特征平均识别率就达到97.3%,"留一法"识别率为99.5%。仿真结果表明:该方法有效地滤除了人脸图像中的高频干扰信息,明显增强了特征的辨别能力,同时显著地降低了特征维数和计算复杂度。 相似文献
2.
刘永生 《杭州电子科技大学学报》2012,32(2):45-48
在传统的主成分分析特征提取中,直接求解特征空间是很困难的,同时也是非常浪费资源,为优化这一问题,该文提出了改进的主成分分析特征提取。在人脸特征提取中,同时还选择了适当的主分量数,用于提高分类识别的速度。在人脸分类识别的过程中,分类策略选取最邻近分类器,通过计算最短欧几里得距离来分类识别测试样本。通过十折交叉验证方法验证了改进的主成分分析和最邻近分类的有效性。 相似文献
3.
SAR图像纹理特征提取与分类研究 总被引:6,自引:0,他引:6
为了高精度地提取合成孔径雷达(SAR)图像中的有用信息,提出一种基于灰度共生矩阵的纹理特征辅助SAR图像分类方法,该方法选择的是在合适的窗口尺寸下能将各种地物类型区分开的最佳纹理特征组合.采用增强的Frost滤波法对SAR图像进行斑点噪声抑制,通过比较各典型地物基于灰度共生矩阵的纹理特征统计量,确定参与分类的最佳纹理特征组合、计算灰度共生矩阵的最佳窗口尺寸;采用主成分分析法去除各纹理特征之间的相关性,选择信息量大的2个主成分与图像的灰度共同组成3个波段的图像;最后采用最大似然分类法对该组合图像进行分类.结果表明:该方法提取出的纹理特征辅助SAR图像分类,比无纹理信息参与的SAR图像分类,其精度可提高11.20%. 相似文献
4.
提出了一种新的虹膜特征提取与识别方法,该方法利用核主成分分析(KPCA)在高维空间具有较强的特征选择能力的特点来提取虹膜图像的纹理特征,采用了一种距离度量和支持向量机相结合的2级分类方法,前级采用欧式距离来度量图像间的相似性,若符合条件,给出分类结果,否则拒绝,并转入后级分类器——支持向量机分类,以减少进入支持向量机的样本数目,该组合分类方法充分利用了支持向量机识别率高和距离度量速度快的优点.实验结果表明,该方法具有较高的效率和识别精度. 相似文献
5.
基于核主成分分析的特征提取方法 总被引:1,自引:0,他引:1
为了证实核主成分分析在特征提取中的优越性,利用支持向量机作为分类器,以主成分分析和核主成分分析作为特征提取的工具,以分类器的分类性能作为方案优劣的评判标准设计了六种实验方案进行实验分析。实验数据表明,对特征选择后的数据集利用主成分分析和核主成分分析进行特征提取,可将数据投影到一个更低维的特征空间,实现数据维数的约简和分类器性能的提高。同时还发现,在对数据进行特征提取的能力上,核主成分分析优于主成分分析。 相似文献
6.
一种有效的SAR图像目标识别方法 总被引:1,自引:0,他引:1
根据不变矩特征提取和支撑矢量机分类的优势,提出了一种有效的SAR图像目标识别方法.首先对样本SAR图像进行预处理。然后提取目标区域的不变矩特征并计算灰度均值,将其组成特征向量训练SVM分类器,最后用训练好的SVM分类器对要识别的SAR图像进行目标识别.采用该方法对一些含有桥梁和坦克的SAR图像进行目标识别实验,取得了较好的识别结果. 相似文献
7.
研究了利用从扬声器响应信号中提取特征进行扬声器故障识别的方法.首先通过小波包分解及重构得到扬声器响应信号的初始特征;然后利用主分量分析(Principal Component Analysis,PCA)的方法对初始特征进行降维处理,并得到最终特征;设计神经网络分类器,并将得到的最终特征输入分类器进行识别.实验表明,该特征提取方法在满足扬声器故障检测识别率的同时,降低了特征提取过程中的计算量,为扬声器故障诊断提供了一种实用方法. 相似文献
8.
采用一种融合奇异值主元投影特征与主元投影特征的特征提取算法对静态人耳图像进行识别。该算法一方面提高了人耳的识别性能,另一方面弥补了采用单一PCA和SVD算法提取人耳特征时的不足,减少了对噪声和光照条件的敏感性。在自建人耳库和CP人耳库中的实验表明算法的合理性和有效性,为实际中处理人耳识别问题提供了参考。 相似文献
9.
基于不变性特征的水下目标特征提取 总被引:1,自引:0,他引:1
针对水下成像环境的特殊性和复杂性,分析了在离散状态下比例因子对不变矩特征的影响,构造了基于区域矩的仿射变换不变量,以克服水下不确定因素给目标识别带来的困难,为了验证所提取特征的有效性,对球体、椭球体、三棱柱和四棱柱4类水下目标进行了特征提取试验.仿真试验结果表明,该方法在对简单背景水下图像的特征提取上能够取得较好的效果,可有效地克服水下图像灰度分布不均和环境不确定因素的干扰,实现了对水下目标的区分. 相似文献
10.
多频极化SAR图像不同的波段和极化方向上存在着冗余信息和相干斑噪声。为此,提出了一种基于核主分量分析(KPCA)的多频率多极化SAR图像信息压缩和抑噪方法。KPCA通过利用"核技巧",对线性PCA进行了非线性的推广。对NASA/JPL 3个波段的多极化SAR图像实验结果表明,相对于线性PCA,KPCA具有更好的信息提取、压缩和噪声抑制作用。 相似文献
11.
梅磊 《空军雷达学院学报》2015,(3):169-172,176
针对合成孔径雷达(SAR)目标检测精确性、实时性和鲁棒性的要求,设计了一种基于局部窗口的SAR图像目标检测算法。该算法在对获取的SAR图像进行去噪和分割处理的基础上,基于尺度不变特征变换(SIFT)实现了亚像素精度快速配准策略;同时,通过SIFT特征的描述结果降维和基于局部窗口的最大期望算法(EM)实现了目标检测。实验结果表明,该算法对复杂背景和光照、旋转变化有较强的自适应性,获得了理想的目标检测效果。 相似文献
12.
一种新的SAR图像目标识别预处理方法 总被引:1,自引:0,他引:1
针对合成孔径雷达(SAR)目标识别问题,提出了一种有效的SAR图像预处理方法.首先通过自适应阈值分割、形态学滤波及几何聚类处理获得干净平滑的目标图像,再采用幂变换来增强图像质量,然后提取图像的主分量分析(PCA)、二维主分量分析(2DPCA)特征来进行识别.基于美国运动和静止目标获取与识别(MSTAR)计划录取的数据的实验结果表明,结合上述预处理,PCA,2DPCA的识别性能均可达到96.5%以上. 相似文献
13.
针对小样本集的多极化合成孔径雷达(SAR)图像目标,提出利用迁移学习、多极化SAR图像增广以及网络架构适应性改进,实现了多极化SAR图像目标端到端的智能分类识别;利用实测机载全极化SAR目标图像进行了实验.实验结果表明,与传统机器学习SVM方法相比,基于多极化SAR深度学习方法所包含的多个神经网络隐含层能自适应地提取目标高层语义特征,其目标分类识别精度更高,从而验证了本文深度学习方法用于多极化SAR图像目标识别分类的有效性. 相似文献
14.
针对散射中心重叠的情况,利用散射中心空域及其散射机理的稀疏特性,提出一种基于全极化属性散射中心模型的合成孔径雷达目标属性特征提取算法.根据散射中心空域与散射机理的稀疏特性,对目标的极化分解系数矩阵分别施加行稀疏约束与矩阵稀疏约束.由于极化散射机理字典包含未知参数,在此采用坐标轮回下降法分别估计极化分解系数矩阵与极化散射机理字典,同时提取属性散射中心及其极化特征等属性特征.基于电磁计算数据的实验结果,验证了该算法能够利用极化信息提取散射中心的属性特征. 相似文献
15.
提出了一种针对变体的识别算法,利用变体与原目标局部纹理之间的相似性进行识别。首先,提出了一种基于清晰边缘的合成孔径雷达(Synthetic aperture radar,SAR)图像配准算法;然后使用结合伽柏(Gabor)变换,局部二值模式(Local binary pattern,LBP)和空间区域直方图的纹理特征来描述SAR图像;最后用基于大特征的直方图序列的匹配做识别。基于MSTAR S2的试验结果证明了本算法的有效性。 相似文献
16.
针对目标姿态图像缺失的情况,提出通过姿态图像合成的方式增加训练集的姿态覆盖程度,并将扩充后的图像也用于训练目标分类器.受稀疏表示模型的启发,建立了一种合成孔径雷达图像姿态合成模型.该模型根据少量已知姿态的图像,线性组合出缺失姿态下的近似图像.在运动和静止目标获取与识别数据集上的实验表明,通过合成缺失姿态下图像的方法可有效提升目标识别的精度,特别是在训练数据集中姿态缺失严重时,文中方法提升尤为明显. 相似文献
17.
针对谱聚类算法计算复杂度高,不适用于合成孔径雷达图像分割的问题,利用谱聚类算法与权核k均值之间的等价性,提出一种基于局部相似性测度的SAR图像多层分割算法.首先提取图像中每个像素的小波纹理特征,利用每个像素点的纹理特征计算各自的局部尺度参数,进而构造像素点之间的邻接关系,然后利用最近邻规则对此邻接关系进行逐层合并,进行基础聚类和逐层细化实现像素点聚类,最终得到图像的分割结果.对人工纹理图像和SAR图像的分割结果表明了新算法避免了传统谱聚类算法对尺度参数的敏感性,获得了更优的分割性能. 相似文献
18.
提出一种SAR图像特定尺寸、方向目标检测方法.根据指数小波对SAR目标边缘的选择性强化特性,对SAR图像进行方向指数小波滤波.基于滤波后的目标特性,定义指数小波分形特征(EWF).该特征依据SAR成像过程中目标尺寸、方向等先验性信息,实现对SAR图像特定目标检测.指数小波分形特征与传统的目标检测特征不同,它对目标尺寸、方向、背景对比度同时具有敏感性.基于MSTAR数据库的检测实验结果说明了EWF特征对尺寸、方向性SAR目标检测的有效性. 相似文献
19.
针对复杂地面背景环境下的武器装备精确探测识别需求,采用Lee增强滤波、对比度自适应直方图均衡化和能量归一化等图像预处理方法,提高SAR图像质量;通过引入两个可学习的参数和采用基于非极大值抑制(NMS)方法构建了优化的YOLO神经网络目标识别方法,对基于轮廓、纹理等特征的地面目标SAR图像自动识别进行了实验.实验结果表明... 相似文献