首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
采用真空反压液相浸渗工艺,以碳纤维M40J增强5A06为研究对象,研究了预制件制备工艺中热去胶过程和超声混杂过程对纤维束丝的物理损伤和化学损伤的程度,纤维束丝分散技术对槽形构件成型及性能的影响.结果表明,热去胶温度和超声分散距离对纤维强度保留率均有显著影响,SiC颗粒可以起分散作用,有利于减少浸渗阻力.与未经颗粒分散的复合材料相比,经过5wt%SiC 3wt%淀粉溶液的分散后,复合材料的体积分数由63.2%降低到51.6%,而复合材料的拉伸强度提高了约59MPa,达到651MPa,密度为2.15g/cm3.  相似文献   

2.
连续纤维增韧碳化硅陶瓷基复合材料研究   总被引:27,自引:6,他引:27  
采用化学气相浸渗法制造了连续碳纤维和碳化硅纤维增韧碳化硅陶瓷基复合材料,并对复合材料的显微结构和力学性能进行了研究,C/SiC/SiC复合材料的密度分别为2.1g/cm^3和2.5g/cm63,在断理解过程中表现出明显的非线性和非灾难性的断裂行为和规律,C/SiC和SiC/SiC弯曲强度分别为450MPa和850MPa,从室温至1600℃强度不发生降低;断裂韧性为20MPa.m^1/2和41.5MPa.m^1/2,断裂功为10kJ.m^-2和28.1kJ.m^-2,冲击韧性为62.0kJ.m^-2和36.0kJ.m^-2,C/SiC和SiC/SiC复合材料具有优异的抗热震性能,经1300℃→←3000℃,50次热震后,强度保持率高达96.4%,热震不是材料性能损伤的控制因素,而SiC/SiC复合材料优异的抗氧化性能,对温度梯度不敏感,得合材料喷管在液体火箭发动机上成功地通过了地面实验。  相似文献   

3.
采用化学气相渗透工艺在Nextel 720纤维表面制备PyC和PyC/SiC两种涂层,然后以正硅酸乙酯和异丙醇铝作为先驱体,以先驱体浸渗热解法制备三维Nextd 720纤维增韧莫来石陶瓷基复合材料,比较分析了两种涂层复合材料的力学性能和断裂模式。结果表明:具预先涂覆PyC的复合材料中纤维与基体直接接触,发生烧结形成强结合界面,复合材料脆性断裂,三点抗弯强度仅56MPa。PyC/SiC涂层则演化为间隙/SiC复合界面层,SiC成为阻滞纤维与基体接触的阻挡层,间隙保证了纤维拔出,复合材料韧性断裂且三点抗弯强度高达267.2MPa。  相似文献   

4.
连续碳化硅纤维增强碳化硅陶瓷基复合材料(SiC/SiC)具有低密度、耐高温、低氚渗透率和优异的辐照稳定性的优点,在航空、航天、核能等领域具有广泛的应用前景。本文针对PIP工艺制备SiC/SiC复合材料周期长、孔隙率较高及易氧化的问题,通过料浆预浸料工艺在基体中引入氧化铝陶瓷形成SiC/Al2O3-SiC复相基体复合材料,并对复合材料制备工艺过程、微观形貌及力学性能进行系统表征。分析结果表明,SiC/Al2O3-SiC复相基体复合材料制备周期较传统PIP工艺大幅度缩短,且复合材料孔隙率明显降低,从11.6%左右降低至6%,拉伸强度为316.5MPa,提升了12.3%,弯曲强度与SiC/SiC相当,但层间剪切强度较低,仅为16.3MPa,有待进一步提高。  相似文献   

5.
以SiC粉及铝合金(3%Mg(质量分数)、5%Mg、7%Mg、10%Mg)为主要原料,采用无压浸渗工艺制备得到了SiC/Al复合材料。表征了SiC/Al复合材料的物相组成、显微结构、力学性能及热导率,研究了合金中Mg含量对SiC/Al复合材料结构组成、力学及热学性能的影响。结果表明:制备得到的SiC/Al复合材料主晶相均为SiC与Al。适量Mg的引入有助于改善铝合金与SiC颗粒间的浸渗性能,能有效促进SiC/Al复合材料的界面反应。其中引入5%Mg样品的显微结构较为致密,综合性能较优,其气孔率为0.13%,体积密度为2.94 g/cm3,抗弯强度为(366.36±14.37)MPa,断裂韧性为(9.2±0.27)MPa·m1/2,热导率为178.81 W/(m·K)。  相似文献   

6.
以SiC粉及铝合金(3%Mg(质量分数)、5%Mg、7%Mg、10%Mg)为主要原料,采用无压浸渗工艺制备得到了SiC/Al复合材料。表征了SiC/Al复合材料的物相组成、显微结构、力学性能及热导率,研究了合金中Mg含量对SiC/Al复合材料结构组成、力学及热学性能的影响。结果表明:制备得到的SiC/Al复合材料主晶相均为SiC与Al。适量Mg的引入有助于改善铝合金与SiC颗粒间的浸渗性能,能有效促进SiC/Al复合材料的界面反应。其中引入5%Mg样品的显微结构较为致密,综合性能较优,其气孔率为0.13%,体积密度为2.94 g/cm3,抗弯强度为(366.36±14.37) MPa,断裂韧性为(9.2±0.27) MPa·m1/2,热导率为178.81 W/(m·K)。  相似文献   

7.
利用化学气相浸渗法制备了Cf-C/SiC复合材料,借助SEM、TEM等研究了纤维类型对Cf-C/SiC复合材料力学性能的影响.实验证明T300碳纤维增韧补强效果优于M40碳纤维,利用T300碳纤维制备出弯曲强度为459M,断裂韧性为20.0MPa*m1/2,断裂功为25170J/m2的Cf-C/SiC复合材料.2种碳纤维增韧效果的差异是由纤维的原始强度、热膨胀系数和弹性常数的不同决定的.  相似文献   

8.
聚碳硅烷浸渍裂解法制备的C/SiC材料研究   总被引:2,自引:0,他引:2  
邹武  王兴业 《炭素》1997,(2):19-23
为提高C/SiC复合材料的机械性能、特别是断裂韧性,对增强体有特殊要求。本文研究了不同纤维增强形式对C/SiC复合材料机械性能的影响。结果表明,含C+SiC过渡层的单向Cr增强SiC基复合材料的断裂韧性达到14.4MPa·m1/2,为未增韧的SiC的四倍,适当的界面结合是使不同的纤维增韧机制在较高的水平下协同作用的关键。四步法三维增强体是整体性的编织结构,经PCS浸清裂解循环8次,Vf=48.0%,x:y:z=4:1:1的四步法三维整体织物增强SiC基复合材料,ρ达到1·71g/cm3,σ\弯达到440MPa,σ剪达到32.3MPa,断裂韧性Kic达到12.68MPa·m1/2。  相似文献   

9.
张力对聚碳硅烷纤维热解过程和SiC纤维性能的影响   总被引:2,自引:1,他引:1  
用先驱体转化法制备连续SiC纤维,在聚碳硅烷(polycarbosilane,PCS)纤维热解过程中有明显的质量损失和收缩,造成了纤维的弯曲,从而影响了SiC纤维的单丝强度和束丝拉伸性能。为避免纤维弯曲,施加一定的张力对预氧化PCS纤维进行热解。结果表明;张力对于纤维的热解过程,特别是对纤维的伸缩过程有很大的影响。通过施加适当的张力,烧成后的SiC纤维平直,丝间的平行度明显改善,单丝强度和束丝拉伸性能均有提高,纤维的晶粒尺寸有一定的增加。加张力烧成中较佳张力为每束丝0.049~0.147N,SiC纤维的单丝强度达1.42GPa,提高20%左右。  相似文献   

10.
采用热模压辅助聚合物先驱体浸渍裂解工艺制备了国产近化学计量比SiC纤维增强SiC陶瓷基复合材料,通过阿基米德排水法和SEM技术对SiC/SiC复合材料致密化过程进行表征,采用弯曲强度、拉伸强度和断裂韧性对SiC/SiC复合材料力学性能和力学行为进行评价。研究表明,热模压压力是影响材料结构和性能的重要因素,热模压在提升材料致密度的同时,亦造成纤维的损伤。随着热模压压力的增加,SiC/SiC复合材料力学性能先增加后降低。热模压压力适中时,致密度增加因素占优,材料力学性能较为优异;热模压压力较大时候,热模压操作对纤维性能的损伤因素逐渐凸显,基体致密化和纤维损伤两种作用机制相当。  相似文献   

11.
《Ceramics International》2020,46(3):2624-2629
TaC/SiC composites with 5 wt% SiC addition were densified by plasma-activated sintering (PAS) at 1500–1800 °C for 5 min under 30 MPa. The effects of plasma-activated sintering on microstructures, densification and mechanical properties of the composites were investigated. The results showed that TaC/SiC composites achieved a relative density more than 99% of the theoretical density at 1600 °C. A low eutectic liquid phase generated by the oxide on the particle surface was observed in the composite to realize a relatively low temperature sintering densification. While the TaC particle size decreased insignificantly with increasing sintering temperature, the transformation of morphology of SiC particles changing from equiaxed to elongated grain was activated, accompanying with a slight particle size decreasing of the SiC phase, thus promoting a relatively high flexural strength of 550 MPa under 1800 °C. Besides, some ultra-fine 2 nm Ta2Si was observed in the glassy pockets, strengthening the amorphous phase and thus increasing the flexural strength.  相似文献   

12.
分别以SiC粉体和Ni包裹的SiC复合粉体为硬质相,采用热压工艺(1000°C,20°C/min,40 MPa和45 min)制备了SiC含量为1 wt%~9 wt%的SiC/Fe复合材料。采用扫描电镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)等研究了复合材料的界面反应物。研究结果表明:Ni过渡层的存在有效避免了SiC颗粒与Fe基体之间的化学反应。随着Ni包裹SiC粉体含量的增加,复合材料的相对密度和抗弯强度先增加后减小,当SiC(Ni)粉体含量为5 wt%时达到最大值。  相似文献   

13.
The Al and H3BO3 mixed powder was introduced into the PCS/Xylene precursor solution as in-situ synthesis α-Al2O3 filler by precursor infiltration and pyrolysis (PIP) method. The in-situ synthesis filler can effectively decrease the open porosity of SiCf/SiC composites and give rise to multiple scattering of microwave and dipolar polarization. Therefore, the mechanical and microwave absorption properties of SiCf/SiC composites can be simultaneously enhanced. The effects of in-situ synthesis filler on the morphologies, flexure strength and reflection loss values of SiCf/SiC composites were investigated. With 2 wt% in-situ synthesis filler, the flexure strength of SiCf/SiC composite was 305 MPa and the maximum reflection loss (RLm) can reach ? 54.68 dB with the effective absorption band (EAB) of 3.51 GHz in the X band. With 5 wt% in-situ synthesis filler, the flexure strength of SiCf/SiC composite was 207 MPa and the RLm was ? 30.91 dB. Due to the inefficient infiltration process, the RLm of SiCf/SiC composites with 10 wt% in-situ synthesis filler was only ? 27.36 dB. Nevertheless, the flexure strength of that composite was 259 MPa, owing to the dense matrix. Additionally, the flexure strength of SiCf/SiC composite without filler was 148 MPa and the RLm was ? 26.40 dB.  相似文献   

14.
The chopped carbon fiber reinforced SiC (Cf/SiC) composite has been regarded as one of the excellent high-temperature structural materials for applications in aerospace and military fields. This paper presented a novel printing strategy using direct ink writing (DIW) of chopped fibers reinforced polymer-derived ceramics (PDCs) with polymer infiltration and pyrolysis (PIP) process for the fabrication of Cf/SiC composites with high strength and low shrinkage. Five types of PDCs printing inks with different Cf contents were prepared, their rheological properties and alignment of carbon fiber in the printing filament were studied. The 3D scaffold structures and bending test samples of Cf/SiC composites were fabricated with different Cf contents. The results found that the Cf/SiC composite with 30 wt% Cf content has high bending strength (~ 7.09 MPa) and negligible linear shrinkage (~ 0.48%). After the PIP process, the defects on the Cf/SiC composite structures were sufficiently filled, and the bending strength of Cf/SiC composite can reach up to about 100 MPa, which was about 30 times greater than that of the pure SiC matrix without Cf. This work demonstrated that the printed Cf/SiC composites by using this method is beneficial to the development of the precision and complex high-temperature structural members.  相似文献   

15.
A novel method combining direct ink writing (DIW) and pressureless infiltration is proposed for fabricating 3D-SiC/Al composites. Chopped carbon fiber was added to DIW ink to serve as a pore-forming agent and facilitate pyrolysis to provide infiltration channels during the preoxidation process. The effects of SiC particle size and carbon fiber content on mechanical properties and the infiltration process were investigated. The thickness of the oxide films produced at different preoxidation temperatures was studied using a transmission electron microscope. The interfacial and interpenetrating phase compositions of 3D-SiC/Al were examined using scanning electron microscopy, an energy dispersive spectrometer, and X-ray diffraction. The results showed that carbon fiber can improve the infiltration effect, with SiO2 layers of differing thickness affecting the infiltration process to different degrees. The final sample exhibited good mechanical properties with a bending strength of 330.3 MPa.  相似文献   

16.
Diamond content is a key factor affecting diamond/SiC composite performance, especially thermal and mechanical properties, but the composite with high diamond content manufacturing is still challenging issues. Hot mold pressing combined with liquid silicon infiltration to make diamond/SiC composites with high diamond content and relative density has been proposed in this paper. In addition, the effect of diamond particle size on the maximization of diamond content as well as properties of the composites were evaluated. The experiment shows that the content of diamond in the composites increases with the increase of the diamond particle size. When the particle size of diamond is 400 µm, the volume fraction of diamond reaches 59.08%. The highest thermal conductivity (ddia= 300 µm) and highest bending strength (ddia= 50 µm) are 616.77 W/m K (It is the maximum TC of diamond/SiC prepared by pressureless infiltration at present) and 380 MPa, respectively. This work provides a novel and efficient preparation method for further improving the thermal conductivity of diamond/SiC composites.  相似文献   

17.
Dense silicon carbide (SiC) ceramics were prepared with 0, 10, 30 or 50 wt% WC particles by hot pressing powder mixtures of SiC, WC and oxide additives at 1800 °C for 1 h under a pressure of 40 MPa in an Ar atmosphere. Effects of alumina or SiC erodent particles and the WC content on the erosion performance of sintered SiC–WC composites were assessed. Microstructures of the sintered composites consisted of WC particles distributed in the equi-axed grain structure of SiC. Fracture surfaces showed a mixed mode of fracture, with a large extent of transgranular fracture observed in SiC ceramics prepared with 30 wt% WC. Crack bridging by WC enhanced toughening of the SiC ceramics. A maximum fracture toughness of 6.7 MPa*m1/2 was observed for the SiC ceramics with 50 wt% WC, whereas a high hardness of 26 GPa was obtained for the SiC ceramics with 30 wt% WC. When eroded at normal incidence, two orders of magnitude less erosion occurred when SiC–WC composites were eroded by alumina particles than that eroded by SiC particles. The erosion rate of the composites increased with increasing angle of SiC particle impingement from 30° to 90°, and decreased with WC reinforcement up to 30 wt%. A minimum erosion wear rate of 6.6 mm3/kg was obtained for SiC–30 wt% WC composites. Effects of mechanical properties and microstructure on erosion of the sintered SiC–WC composites are discussed, and the dominant wear mechanisms are also elucidated.  相似文献   

18.
Mullitization temperatures and mechanical properties of reaction-bonded mullite composites were investigated using silicon carbide (SiC) of two different particle sizes (180 nm and 2.5 μm) as one of the starting components. The smaller SiC particle size resulted in earlier mullitization, lower final densities, and lower strength of these composites. The sintering shrinkage of these composites was investigated. Low-to-zero shrinkage was rendered possible via volume expansions that were associated with the oxidation of SiC and aluminum in the green material. Green bodies that contained 55 vol% aluminum were compacted to 70% of the theoretical density. The materials showed a linear sintering shrinkage of <1% and had a four-point bend strength of 430 MPa. Samples that were made from precursors with the coarse (2.5 μm) SiC were covered by a porous outer layer after firing in air. This layer led to anisotropy in shrinkage. The porosity of this outer layer was attributed to the oxidation of residual SiC during sintering and the trapping of gaseous oxidation products. Samples that were made from the fine (180 nm) SiC did not exhibit such a layer and showed isotropic shrinkage.  相似文献   

19.
Cf/SiC composites were fabricated using fiber coatings including CNTs and matrix infiltration using the polymer impregnation and pyrolysis process. Interface between fiber and CNTs (CF/CNTs) was tailored to optimize mechanical properties of hybrid composites. The tailored interphases, such as Pyrocarbon (PyC) and PyC/SiC, protect fibers from degradation during the growth of CNTs successfully. Hybrid composites with well‐tailored CF/CNTs interface displayed significantly increased mechanical strength (352 ± 21 MPa) compared with that (34 ± 3 MPa) of composites reinforced with CNTs, which grown on carbon fibers directly. The interfacial bonding strength of hybrid composites was improved and optimized by tailoring the CF/CNTs interface. Interfacial failure modes were studied, and a firm interface bonding at the joint where CNTs grown was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号