首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlorophyll content can be used as an indicator to monitor crop diseases. In this article, an experiment on winter wheat stressed by stripe rust was carried out. The canopy reflectance spectra were collected when visible symptoms of stripe rust in wheat leaves were seen, and canopy chlorophyll content was measured simultaneously in laboratory. Continuous wavelet transform (CWT) was applied to process the smoothed spectral and derivative spectral data of winter wheat, and the wavelet coefficient features obtained by CWT were regarded as the independent variable to establish estimation models of chlorophyll content. The hyperspectral vegetation indices were also regarded as the independent variable to build estimation models. Then, two types of models above-mentioned were compared to ascertain which type of model is better. The cross-validation method was used to determine the model accuracies. The results indicated that the estimation model of chlorophyll content, which is a multivariate linear model constructed using wavelet coefficient features extracted by Mexican Hat wavelet function processing the smoothed spectrum (WSMH1 and WSMH2), is the best model. It has the highest estimation accuracy with modelled coefficient of determination (R2) of 0.905, validated R2 of 0.913, and root mean square error (RMSE) of 0.288 mg fg?1. The univariate linear model built by wavelet coefficient feature of WSMH1 is secondary and the modelled R2 is 0.797, validated R2 is 0.795, and RMSE is 0.397 mg fg?1. Both estimation models are better than those of all hyperspectral vegetation indices. The research shows that the feature information of canopy chlorophyll content of winter wheat can be captured by wavelet coefficient features which are extracted by the method of CWT processing canopy reflectance spectrum data. Therefore, it could provide theoretical support on detecting diseases of crop by remote sensing quantitatively estimating chlorophyll content.  相似文献   

2.
The apparent electrical conductivity (σa) of soil is influenced by a complex combination of soil physical and chemical properties. For this reason, σa is proposed as an indicator of plant stress and potential community structure changes in an alkaline wetland setting. However, assessing soil σa is relatively laborious and difficult to accomplish over large wetland areas. This work examines the feasibility of using the hyperspectral reflectance of the vegetation canopy to characterize the σa of the underlying substrate in a study conducted in a Central California managed wetland. σa determined by electromagnetic (EM) inductance was tested for correlation with in-situ hyperspectral reflectance measurements, focusing on a key waterfowl forage species, swamp timothy (Crypsis schoenoides). Three typical hyperspectral indices, individual narrow-band reflectance, first-derivative reflectance and a narrow-band normalized difference spectral index (NDSI), were developed and related to soil σa using univariate regression models. The coefficient of determination (R 2) was used to determine optimal models for predicting σa, with the highest value of R 2 at 2206 nm for the individual narrow bands (R 2?=?0.56), 462 nm for the first-derivative reflectance (R 2?=?0.59), and 1549 and 2205 nm for the narrow-band NDSI (R 2?=?0.57). The root mean squared error (RMSE) and relative root mean squared error (RRMSE) were computed using leave-one-out cross-validation (LOOCV) for accuracy assessment. The results demonstrate that the three indices tested are valid for estimating σa, with the first-derivative reflectance performing better (RMSE?=?30.3 mS m?1, RRMSE?=?16.1%) than the individual narrow-band reflectance (RMSE?=?32.3 mS m?1, RRMSE?=?17.1%) and the narrow-band NDSI (RMSE?=?31.5 mS m?1, RRMSE?=?16.7%). The results presented in this paper demonstrate the feasibility of linking plant–soil σa interactions using hyperspectral indices based on in-situ spectral measurements.  相似文献   

3.
In this study, various hyperspectral indices were evaluated for estimation of leaf area index (LAI) and crop discrimination under different irrigation treatments. The study was conducted for potato crop using the spectral reflectance values measured by a hand‐held spectro‐radiometer. Three categories of hyperspectral indices, such as ratio/difference indices, multivariate indices and derivative based indices were computed. It was found that, among various band combinations for NDVI (normalized difference vegetation index) and SAVI (soil adjusted vegetation index), the band combination of the 780~680, produced highest correlation coefficient with LAI. Among all the forms of LAI and VI empirical relationships, the power and exponential equations had highest R 2 and F values. Analysis of variance showed that, hyperspectral indices were found to be more efficient than the LAI to detect the differences among crops under different irrigation treatments. The discriminant analysis produced a set of five most optimum bands to discriminate the crops under three irrigation treatments.  相似文献   

4.
Bahia grass (Paspalum notatum Flugge.) plants were grown in silica sand and irrigated daily with one of five levels of Zn (0, 0.5, 25, 50, or 100 mg l−1) to determine the effects of the heavy metal on the growth and development of plant canopies. Healthy and stressed plants were measured with two hyperspectral imagers, laser-induced fluorescence spectroscopy (LIFS), and laser-induced fluorescence imaging (LIFI) systems in order to determine if the four handheld remote sensing instruments were equally capable of detecting plant stress and measuring canopy chlorophyll levels in bahia grass. Symptoms of bahia grass plants grown at deficient (0 mg l−1) or toxic (25, 50, or 100 mg l−1) concentrations of Zn were dominated by leaf chlorosis and plant stunting. Leaf fresh weight, leaf dry weight, CO2 assimilation, total chlorophyll, and leaf thickness followed (+) quadratic models in which control plants (0.5 mg l−1 Zn) exhibited higher responses than plants grown at either deficient or toxic levels of Zn. Normalized difference vegetation index [NDVI=(NIR−Red)/(NIR+Red)] and ratio vegetation index [RVI=R750/R700, in which R denotes reflectance] values were calculated for calibrated digital images from both hyperspectral imagers. The NDVI and RVI values from both hyperspectral imagers were fit best by (+) quadratic models when treatments were constrained between 0 and 100 mg l−1 Zn, but were fit best by linear regression models with (−) slopes when treatments were constrained between 0.5 and 100 mg l−1 Zn. Furthermore, both NDVI and RVI algorithms were effective in predicting the concentrations of chlorophyll in canopies of bahia grass grown at the various levels of Zn. In contrast, red/far-red (R/FR) fluorescence ratios estimated from leaf fluorescence values measured with the LIFS and LIFI instruments were fit best by (−) quadratic models when treatments were constrained between 0 and 100 mg l−1 Zn, but were fit best by linear regression models with (+) slopes when treatments were constrained between 0.5 and 100 mg l−1 Zn. A series of regression analyses were conducted among plant biometric, biochemical, and leaf anatomical parameters (treated as independent variables) and the remote sensing algorithms, NDVI, RVI, blue/green (BL/GR), and R/FR (treated as dependant variables). In general, residuals were significantly higher for NDVI and RVI models compared to the BL/GR and R/FR models indicating that the NDVI and RVI algorithms were able to measure total chlorophyll and plant biomass more accurately than the BL/GR and R/FR algorithms. However, unique capabilities of LIFS and LIFI instruments continue to argue for the development of laser-induced fluorescence remote sensing technologies.  相似文献   

5.
A field experiment with wheat was conducted with four different nitrogen and four different water stress levels, and hyperspectral reflectances in the 350–2500 nm range were recorded at six crop phenostages for two years (2009–2010 and 2010–2011). Thirty-two hyperspectral indices were determined using the first-year reflectance data. Plant nitrogen (N) status, characterized by leaf nitrogen content (LNC) and plant nitrogen accumulation (PNA), showed the highest R 2 with the spectral indices at the booting stage. The best five predictive equations for LNC were based on the green normalized difference vegetation index (GNDVI), normalized difference chlorophyll index (NDCI), normalized difference705 (ND705) index, ratio index-1dB (RI-1dB) and Vogelman index a (VOGa). Their validation using the second-year data showed high R 2 (>0.80) and ratio of performance to deviation (RPD; >2.25) and low root mean square error (RMSE; <0.24) and relative error (<10%). For PNA, five predictive equations with simple ratio pigment index (SRPI), photochemical reflectance index (PRI), modified simple ratio705 (mSR705), modified normalized difference705 (mND705) and normalized pigment chlorophyll index (NPCI) as predicting indices yielded the best relations with high R 2 > 0.80. The corresponding RMSE and RE of these ranged from 1.39 to 1.13 and from 24.5% to 33.3%, respectively. Although the predicted values show good agreement with the observed values, the prediction of LNC is more accurate than PNA, as indicated by higher RMSE and very high RE for the latter. Hence, the plant nitrogen stress of wheat can be accurately assessed through the prediction of LNC based on the five identified reflectance indices at the booting stage.  相似文献   

6.
The inflection point of spectral reflectance of crop in the red edge region (680–780 nm) is termed as the red edge position (REP), which is sensitive to crop biochemical and biophysical parameters. We propose a technique for automatic detection of four dynamic wavebands, i.e. two in the far-red and two in the near-infrared (NIR) region from hyperspectral data, for REP estimation using the linear extrapolation method. A field experiment was conducted at the SHIATS Farm, Allahabad, India, with four levels of nitrogen and irrigation treatments to assess the sensitivity of REP towards crop stress. A correlation analysis was carried out between REPs and different biophysical parameters, such as leaf area index (LAI) and chlorophyll content index (CCI), recorded in each plot at 50, 70, and 90 days after sowing of wheat crop under the field experiment. The inter-comparison among different REP extraction techniques revealed that the proposed technique, i.e. the modified linear extrapolation (MLE) method, has a better ability to distinguish different crop stress conditions. REPs extracted using the MLE technique showed high correlations with a wide range of LAI, CCI, and LAI × CCI, being comparable with results obtained using the traditional linear extrapolation and polynomial fitting techniques. The behaviour of the new techniques was found to be stable at both narrower and broader bandwidth, i.e. 2 and 10 nm. A new red-edge-based index, i.e. area under REP (AREP), was used to detect the cumulative stress over wheat crop by utilizing the REP and its rate of change information at different crop growth stages. A high coefficient of determination (R2 = 0.89) was found between AREP and dry grain yield (Q ha?1) up to 50 Q ha?1 of wheat crop, whereas, beyond this range the relationship was found to be diminishing.  相似文献   

7.
The gravimetric water content (GWC, %), a commonly used measure of leaf water content, describes the ratio of water to dry matter for each individual leaf. To date, the relationship between spectral reflectance and GWC in leaves is poorly understood due to the confounding effects of unpredictably varying water and dry matter ratios on spectral response. Few studies have attempted to estimate GWC from leaf reflectance spectra, particularly for a variety of species. This paper investigates the spectroscopic estimation of leaf GWC using continuous wavelet analysis applied to the reflectance spectra (350-2500 nm) of 265 leaf samples from 47 species observed in tropical forests of Panama. A continuous wavelet transform was performed on each of the reflectance spectra to generate a wavelet power scalogram compiled as a function of wavelength and scale. Linear relationships were built between wavelet power and GWC expressed as a function of dry mass (LWCD) and fresh mass (LWCF) in order to identify wavelet features (coefficients) that are most sensitive to changes in GWC. The derived wavelet features were then compared to three established spectral indices used to estimate GWC across a wide range of species.Eight wavelet features observed between 1300 and 2500 nm provided strong correlations with LWCD, though correlations between spectral indices and leaf GWC were poor. In particular, two features captured amplitude variations in the broad shape of the reflectance spectra and three features captured variations in the shape and depth of dry matter (e.g., protein, lignin, cellulose) absorptions centered near 1730 and 2100 nm. The eight wavelet features used to predict LWCD and LWCF were not significantly different; however, predictive models used to determine LWCD and LWCF differed. The most accurate estimates of LWCD and LWCF obtained from a single wavelet feature showed root mean square errors (RMSEs) of 28.34% (R2 = 0.62) and 4.86% (R2 = 0.69), respectively. Models using a combination of features resulted in a noticeable improvement predicting LWCD and LWCF with RMSEs of 26.04% (R2 = 0.71) and 4.34% (R2 = 0.75), respectively. These results provide new insights into the role of dry matter absorption features in the shortwave infrared (SWIR) spectral region for the accurate spectral estimation of LWCD and LWCF. This emerging spectral analytical approach can be applied to other complex datasets including a broad range of species, and may be adapted to estimate basic leaf biochemical elements such as nitrogen, chlorophyll, cellulose, and lignin.  相似文献   

8.
Existing vegetation indices and red-edge techniques have been widely used for the assessment of vegetation status and vegetation health from remote-sensing instruments. This study proposed and applied optimized Airborne Imaging Spectrometer for Applications (AISA) airborne hyperspectral indices in assessing and mapping stressed oil palm trees. Six vegetation indices, four red-edge techniques, a standard supervised classifier and three optimized AISA spectral indices were compared in mapping diseased oil palms using AISA airborne hyperspectral imagery. The optimized AISA spectral indices algorithms used newly defined reflectance values at wavelength locations of 734 nm (near-infrared (NIR)) and 616 nm (red). The selection of these two bands was based on laboratory statistical analysis using field spectroradiometer reflectance data. These two bands were then applied to the AISA airborne hyperspectral imagery using the three optimized algorithms for AISA data. The newly formulated AISA hyperspectral indices were D2 = R 616/R 734, normalized difference vegetation index a (NDVIa)?=?(R 734R 616)/(R 734?+?R 616) and transformed vegetation index a (TVIa)?=?((NDVIa?+?0.5)/(abs (NDVIa?+?0.5))?×?[abs (NDVIa?+?0.5)]1/2. The classification results from the optimized AISA hyperspectral indices were compared with the other techniques and the optimized AISA spectral indices obtained the highest overall accuracy. D2 and NDVIa obtained 86% of overall accuracy followed by TVIa with 84% of overall accuracy.  相似文献   

9.
As a first step in developing classification procedures for remotely acquired hyperspectral mapping of mangrove canopies, we conducted a laboratory study of mangrove leaf spectral reflectance at a study site on the Caribbean coast of Panama, where the mangrove forest canopy is dominated by Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle. Using a high‐resolution spectrometer, we measured the reflectance of leaves collected from replicate trees of three mangrove species growing in productive and physiologically stressful habitats. The reflectance data were analysed in the following ways. First, a one‐way ANOVA was performed to identify bands that exhibited significant differences (P value<0.01) in the mean reflectance across tree species. The selected bands then formed the basis for a linear discriminant analysis (LDA) that classified the three types of mangrove leaves. The contribution of each narrow band to the classification was assessed by the absolute value of standardised coefficients associated with each discriminant function. Finally, to investigate the capability of hyperspectral data to diagnose the stress condition across the three mangrove species, four narrow band ratios (R 695/R 420, R 605/R 760, R 695/R 760, and R 710/R 760 where R 695 represents reflectance at wavelength of 695nm, and so on) were calculated and compared between stressed and non‐stressed tree leaves using ANOVA.

Results indicate a good discrimination was achieved with an average kappa value of 0.9. Wavebands at 780, 790, 800, 1480, 1530, and 1550 nm were identified as the most useful bands for mangrove species classification. At least one of the four reflectance ratio indices proved useful in detecting stress associated with any of the three mangrove species. Overall, hyperspectral data appear to have great potential for discriminating mangrove canopies of differing species composition and for detecting stress in mangrove vegetation.  相似文献   

10.
Relationships of plant species richness with spectral indices derived from airborne hyperspectral image data were evaluated for several habitat-types on Horn Island, Mississippi, northern Gulf of Mexico. A 126-band hyperspectral data cube of Horn Island acquired by the HyMap imaging system covered the 450–2500 nm spectrum at a 3 m Ground Sample Distance (GSD). Reflectance spectra were extracted from 5–11 HyMap pixels representing each of 95, 15-m vegetation line transects that were established randomly on the island. In simple regressions, no index related to richness when data from all habitat-types were combined. However, a number of reflectance and spectral derivative indices related significantly (p  0.05) with richness when habitat-types were considered separately. Only those indices which passed a fidelity test based on the consistency of index response to changes in plant and environmental moisture were selected as potentially reliable indicators of richness. Transect coefficient of variation (CV) for R1056/R966 and R920/R834 related negatively with richness in meadows and transition zones, respectively. The CV of R951/R1100 and R904 related negatively with woodland richness. Negative regression slopes, field observations and spectral mixtures indicated that richness in these habitats declined with increased bare soil exposure. In marsh habitat, positive relationships of richness with mean R618/R2475 or the CV of R514/R2459 were explained by the increasing presence and patchy distribution of broadleaved vegetation in the progression from wetter, low-richness sites to slightly-elevated, higher-richness sites. Present results combined with those of a previous grassland study suggested that remotely-sensed indicators of soil exposure may be generally useful in the assessment of plant species richness in mesic habitats.  相似文献   

11.
12.
Hyperspectral remote sensing has great potential for accurate retrieval of forest biochemical parameters. In this paper, a hyperspectral remote sensing algorithm is developed to retrieve total leaf chlorophyll content for both open spruce and closed forests, and tested for open forest canopies. Ten black spruce (Picea mariana (Mill.)) stands near Sudbury, Ontario, Canada, were selected as study sites, where extensive field and laboratory measurements were carried out to collect forest structural parameters, needle and forest background optical properties, and needle biophysical parameters and biochemical contents chlorophyll a and b. Airborne hyperspectral remote sensing imagery was acquired, within one week of ground measurements, by the Compact Airborne Spectrographic Imager (CASI) in a hyperspectral mode, with 72 bands and half bandwidth 4.25-4.36 nm in the visible and near-infrared region and a 2 m spatial resolution. The geometrical-optical model 4-Scale and the modified leaf optical model PROSPECT were combined to estimate leaf chlorophyll content from the CASI imagery. Forest canopy reflectance was first estimated with the measured leaf reflectance and transmittance spectra, forest background reflectance, CASI acquisition parameters, and a set of stand parameters as inputs to 4-Scale. The estimated canopy reflectance agrees well with the CASI measured reflectance in the chlorophyll absorption sensitive regions, with discrepancies of 0.06%-1.07% and 0.36%-1.63%, respectively, in the average reflectances of the red and red-edge region. A look-up-table approach was developed to provide the probabilities of viewing the sunlit foliage and background, and to determine a spectral multiple scattering factor as functions of leaf area index, view zenith angle, and solar zenith angle. With the look-up tables, the 4-Scale model was inverted to estimate leaf reflectance spectra from hyperspectral remote sensing imagery. Good agreements were obtained between the inverted and measured leaf reflectance spectra across the visible and near-infrared region, with R2 = 0.89 to R2 = 0.97 and discrepancies of 0.02%-3.63% and 0.24%-7.88% in the average red and red-edge reflectances, respectively. Leaf chlorophyll content was estimated from the retrieved leaf reflectance spectra using the modified PROSPECT inversion model, with R2 = 0.47, RMSE = 4.34 μg/cm2, and jackknifed RMSE of 5.69 μg/cm2 for needle chlorophyll content ranging from 24.9 μg/cm2 to 37.6 μg/cm2. The estimates were also assessed at leaf and canopy scales using chlorophyll spectral indices TCARI/OSAVI and MTCI. An empirical relationship of simple ratio derived from the CASI imagery to the ground-measured leaf area index was developed (R2 = 0.88) to map leaf area index. Canopy chlorophyll content per unit ground surface area was then estimated, based on the spatial distributions of leaf chlorophyll content per unit leaf area and the leaf area index.  相似文献   

13.
There has been growing interest in the use of reflectance spectroscopy as a rapid and inexpensive tool for soil characterization. In this study, we collected 95 soil samples from the Yellow River Delta of China to investigate the level of soil salinity in relation to soil spectra. Sample plots were selected based on a field investigation and the corresponding soil salinity classification map to maximize variations of saline characteristics in the soil. Spectral reflectances of air‐dried soil samples were measured using an Analytical Spectral Device (ASD) spectrometer (350–2500 nm) with an artificial light source. In the Yellow River Delta, the dominant chemical in the saline soil was NaCl and MgCl2. Soil spectra were analysed using two‐thirds of the available samples, with the remaining one‐third withheld for validation purposes. The analysis indicated that with some preprocessing, the reflectance at 1931–2123 nm and 2153–2254 nm was highly correlated with soil salt content (S SC). In the spectral region of 1931–2123 nm, the correlation R ranged from ?0.80 to ?0.87. In the region of 2153–2254 nm, the S SC was positively correlated with preprocessed reflectance (0.79–0.88). The preprocessing was done by fitting a convex hull to the reflectance curve and dividing the spectral reflectance by the value of the corresponding convex hull band by band. This process is called continuum removal, and the resulting ratio is called continuum removed reflectance (CR reflectance). However, the S SC did not have a high correlation with the unprocessed reflectance, and the correlation was always negative in the entire spectrum (350–2500 nm) with the strongest negative correlation at 1981 nm (R = ?0.63). Moreover, we found a strong correlation (R = 0.91) between a soil salinity index (S SI: constructed using CR reflectance at 2052 nm and 2203 nm) and S SC. We estimated S SC as a function of S SI and S SI′ (S SI′: constructed using unprocessed reflectance at 2052 nm and 2203 nm) using univariate regression. Validation of the estimation of S SC was conducted by comparing the estimated S SC with the holdout sample points. The comparison produced an estimated root mean squared error (RMSE) of 0.986 (S SC ranging from 0.06 to 12.30 g kg?1) and R 2 of 0.873 for S SC with S SI as independent variable and RMSE of 1.248 and R 2 of 0.8 for S SC with S SI′ as independent variable. This study showed that a soil salinity index developed for CR reflectance at 2052 nm and 2203 nm on the basis of spectral absorption features of saline soil can be used as a quick and inexpensive method for soil salt‐content estimation.  相似文献   

14.
Detection of sub-surface optical layers in marine waters has important applications in fisheries management, climate modeling, and decision-based systems related to military operations. Concurrent changes in the magnitude and spatial variability of remote sensing reflectance (Rrs) ratios and submerged scattering layers were investigated in coastal waters of the northern Gulf of Alaska during summer of 2002 based on high resolution and simultaneous passive (MicroSAS) and active (Fish Lidar Oceanic Experimental, FLOE) optical measurements. Principal Component Analysis revealed that the spatial variability of total lidar backscattering signal (S) between 2.1 and 20 m depth was weakly associated with changes in the inherent optical properties (IOPs) of surface waters. Also based on a 250-m footprint, the vertical attenuation of S was inversely related to the IOPs (Spearman Rank Correlation up to −0.43). Low (arithmetic average and standard deviation) and high (skewness and kurtosis) moments of Rrs(443)/Rrs(490) and Rrs(508)/Rrs(555) ratios were correlated with vertical changes in total lidar backscattering signal (S) at different locations. This suggests the use of sub-pixel ocean color statistics to infer the spatial distribution of sub-surface scattering layers in coastal waters characterized by stratified conditions, well defined S layers (i.e., magnitude of S maximum comparable to near surface values), and relatively high vertically integrated phytoplankton pigments in the euphotic zone (chlorophyll a concentration > 150 mg m− 2).  相似文献   

15.
We examine the itinerary of 0∈S1=R/Z under the rotation by αR?Q. The motivating question is: if we are given only the itinerary of 0 relative to IS1, a finite union of closed intervals, can we recover α and I? We prove that the itineraries do determine α and I up to certain equivalences. Then we present elementary methods for finding α and I. Moreover, if g:S1S1 is a C2, orientation preserving diffeomorphism with an irrational rotation number, then we can use the orbit itinerary to recover the rotation number up to certain equivalences.  相似文献   

16.
A series of experiments carried out in a controlled environment facility to induce steady-state chlorophyll a fluorescence variation demonstrate that natural fluorescence emission is observable on the derivative reflectance spectra as a double-peak feature in the 690-710 nm spectral region. This work describes that the unexplained double-peak feature previously seen on canopy derivative reflectance is due entirely to chlorophyll fluorescence (CF) effects, demonstrating the importance of derivative methods for fluorescence detection in vegetation. Measurements were made in a controlled environmental chamber where temperature and humidity were varied through the time course of the experiments in both short- and long-term trials using Acer negundo ssp. californium canopies. Continuous canopy reflectance measurements were made with a spectrometer on healthy and stressed vegetation, along with leaf-level steady-state fluorescence measurements with the PAM-2000 Fluorometer during both temperature-stress induction and recovery stages. In 9-h trials, temperatures were ramped from 10 to 35 °C and relative humidity adjusted from 92% to 42% during stress induction, returning gradually to initial conditions during the recovery stage. Canopy reflectance difference calculations and derivative analysis of reflectance spectra demonstrate that a double-peak feature created between 688, 697 and 710 nm on the derivative reflectance is a function of natural steady-state fluorescence emission, which gradually diminished with induction of maximum stress. Derivative reflectance indices based on this double-peak feature are demonstrated to track natural steady-state fluorescence emission as quantified by two indices, the double-peak index (DPi) and the area of the double peak (Adp). Results obtained employing these double-peak indices from canopy derivative reflectance suggest a potential for natural steady-state fluorescence detection with hyperspectral data. Short- and long-term stress effects on the observed double-peak derivative indices due to pigment degradation and canopy structure changes were studied, showing that both indices are capable of tracking steady-state fluorescence changes from canopy remote sensing reflectance.  相似文献   

17.
The normalized peak area (NPA) of remote-sensing reflectance (R rs) in the near-infrared region was used to estimate the concentration of total suspended matter (C TSM) in coastal waters. A linear regression model between C TSM and S NPA (R 2?=?0.83) was established, where S NPA is the area encompassed by the reflectance curve and the straight line between wavelengths 768 and 840 nm where there is a maximum of R rs near 715 nm. In the Pearl River estuary of South China, this NPA model performed better than other single-band and multi-band regression models, with a root mean square error (RMSE) of 4.07 mg l–1. This model may be widely applied to in situ measurements of TSM.  相似文献   

18.
This paper investigates the use of wavelet ensemble models for high performance concrete (HPC) compressive strength forecasting. More specifically, we incorporate bagging and gradient boosting methods in building artificial neural networks (ANN) ensembles (bagged artificial neural networks (BANN) and gradient boosted artificial neural networks (GBANN)), first. Coefficient of determination (R2), mean absolute error (MAE) and the root mean squared error (RMSE) statics are used for performance evaluation of proposed predictive models. Empirical results show that ensemble models (R2BANN=0.9278, R2GBANN=0.9270) are superior to a conventional ANN model (R2ANN=0.9088). Then, we use the coupling of discrete wavelet transform (DWT) and ANN ensembles for enhancing the prediction accuracy. The study concludes that DWT is an effective tool for increasing the accuracy of the ANN ensembles (R2WBANN=0.9397, R2WGBANN=0.9528).  相似文献   

19.
Many algorithms have been developed for the remote estimation of biophysical characteristics of vegetation, in terms of combinations of spectral bands, derivatives of reflectance spectra, neural networks, inversion of radiative transfer models, and several multi-spectral statistical approaches. However, the most widespread type of algorithm used is the mathematical combination of visible and near-infrared reflectance bands, in the form of spectral vegetation indices. Applications of such vegetation indices have ranged from leaves to the entire globe, but in many instances, their applicability is specific to species, vegetation types or local conditions. The general objective of this study is to evaluate different vegetation indices for the remote estimation of the green leaf area index (Green LAI) of two crop types (maize and soybean) with contrasting canopy architectures and leaf structures. Among the indices tested, the chlorophyll Indices (the CIGreen, the CIRed-edge and the MERIS Terrestrial Chlorophyll Index, MTCI) exhibited strong and significant linear relationships with Green LAI, and thus were sensitive across the entire range of Green LAI evaluated (i.e., 0.0 to more than 6.0 m2/m2). However, the CIRed-edge was the only index insensitive to crop type and produced the most accurate estimations of Green LAI in both crops (RMSE = 0.577 m2/m2). These results were obtained using data acquired with close range sensors (i.e., field spectroradiometers mounted 6 m above the canopy) and an aircraft-mounted hyperspectral imaging spectroradiometer (AISA). As the CIRed-edge also exhibited low sensitivity to soil background effects, it constitutes a simple, yet robust tool for the remote and synoptic estimation of Green LAI. Algorithms based on this index may not require re-parameterization when applied to crops with different canopy architectures and leaf structures, but further studies are required for assessing its applicability in other vegetation types (e.g., forests, grasslands).  相似文献   

20.
Estimation of Hurst exponent revisited   总被引:1,自引:0,他引:1  
In order to estimate the Hurst exponent of long-range dependent time series numerous estimators such as based e.g. on rescaled range statistic (R/S) or detrended fluctuation analysis (DFA) are traditionally employed. Motivated by empirical behaviour of the bias of R/S estimator, its bias-corrected version is proposed. It has smaller mean squared error than DFA and behaves comparably to wavelet estimator for traces of size as large as 215 drawn from some commonly considered long-range dependent processes. It is also shown that several variants of R/S and DFA estimators are possible depending on the way they are defined and that they differ greatly in their performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号