首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
A commercial computational fluid dynamics code (Fluent) has been used to analyze the performance of a unit cell laboratory; the filter-press reactor (FM01-LC) operating with characteristic linear flow velocities between 0.024 m s−1 and 0.110 m s−1. The electrolyte flow through the reactor channel was numerically simulated using a finite volume approach to the solution of the Navier-Stokes equations. The flow patterns in the reactor were obtained and the mean linear electrolyte velocity was evaluated and substituted into a general mass transport correlation to calculate the mass transport coefficients. In the region of 150 < Re < 550, mass transport coefficients were obtained with a relative error between 5% and 29% respect to the experimental km values. The differences between theoretical and experimental values are discussed.  相似文献   

2.
Aerographite is a three‐dimensional carbon foam with a tetrapodal morphology. The manufacturing of aerographite is carried out in a chemical vapor deposition (CVD) process, based on a zinc oxide (ZnO) template, in which the morphology is replicated into a hollow carbon shell. During the replication process, the template is reduced by the simultaneous formation of the carbon structure. The CVD process is one of the most efficient methods for the manufacturing of various carbon nanostructures, such as graphene or carbon nanotubes (CNTs). Based on the growth mechanism of aerographite, a computational fluid dynamics model is presented for the fundamental investigations of the temperature and flow/microflow behavior during the replication process. This allows a deeper process understanding and further optimizations.  相似文献   

3.
The 3D flow field generated by a Scaba 6SRGT impeller in the agitation of xanthan gum, a pseudoplastic fluid with yield stress, was simulated using the commercial CFD package. The flow was modeled as laminar and a multiple reference frame (MRF) approach was used to solve the discretized equations of motion. The velocity profiles predicted by the simulation agreed well with those measured using ultrasonic Doppler velocimetry, a non-invasive fluid flow measurement technique for opaque systems. Using computed velocity profiles across the impeller, the effect of fluid rheology on the impeller flow number was investigated. The validated CFD model provided useful information regarding the formation of cavern around the impeller in the mixing of yield stress fluids and the size of cavern predicted by the CFD model was in good agreement with that calculated using Elson's model.  相似文献   

4.
A significant increase in the particle sedimentation rate can be achieved by introducing inclined plates into conventional fluidised beds. In turn, high suspension densities are possible at fluidisation velocities in excess of the particle terminal velocity. The installation of the inclined plates, however, alters the dynamic characteristics of the fluidised bed, in particular, impacting upon the expansion behaviour of the suspension. In the present work a Computational Fluid Dynamics (CFD) approach was employed to investigate the influence of inclined plates on the expansion behaviour of solids suspensions in liquid fluidised beds. The model is based on the solution of the Eulerian multiphase equations for up to two different particle sizes with a continuous phase of water. The momentum equations treat hindered settling behaviour via the inclusion of a volume fraction dependent drag law. The computational model was validated against our experimental data and compared with the predictions of a kinematic model developed in one of our earlier works. In general the predictions made by both the CFD and the kinematic models were found to be in good agreement with the experimental results.  相似文献   

5.
This paper extends the in situ adaptive tabulation (ISAT) algorithm for accelerating the simulation of complex heterogeneous chemical kinetics within transient, three-dimensional, computational fluid dynamics (CFD). The ISAT algorithm, initially developed for homogeneous combustion kinetics, takes advantage of the fact that initial conditions for the chemistry in a particular cell (i.e., temperature and composition) may have been present in this cell or another cell earlier in the simulation. In such cases, the solution can be extracted from a tabulation of prior solutions more efficiently than solving the local kinetics problem. The ISAT algorithm uses efficient tabulation and retrieval algorithms, greatly accelerating the solution process. Illustrative results are based on the simulation of methane reforming in a catalytic microchannel reactor, considering coupled fluid mechanics, catalytic chemistry, and conjugate heat transfer.  相似文献   

6.
Electrical resistance tomography (ERT) provides a non-intrusive technique to examine, in three dimensions, the homogeneity and flow pattern inside the mixing tank. In this study, a 4-plane 16-sensor ring ERT system was employed to study the shape and the size of cavern generated around a radial-flow Scaba 6SRGT impeller in the mixing of xanthan gum solution, which is a pseudoplastic fluid possessing yield stress. The size of cavern measured using ERT was in good agreement with that calculated using Elson's model (cylindrical model). The 3D flow field generated by the impeller in the agitation of xanthan gum was also simulated using the commercial computational fluid dynamics (CFD) package (Fluent). The CFD model provided useful information regarding the impeller pumping capacity, flow pattern, and the formation of cavern around the impeller. CFD results showed good agreement with the experimental data and theory.  相似文献   

7.
A computational fluid dynamic (CFD) study has been carried out to simulate velocity, temperature, and concentration profiles in a vertical chemical vapor deposition (CVD) reactor used for growing carbon nanofibers (CNFs). CNFs were grown over activated carbon fibers (ACFs) wrapped over an especially designed perforated tube which was vertically mounted in the reactor. The numerical model analysis incorporated the conservation equations of momentum, energy, and species. Natural convection effects on the heat-transfer and the exothermic heat generation due to the decomposition of benzene were included. The model simulation results revealed that approximately uniform temperature and concentration profiles existed in the ACF-packed bed. In addition, multiple combinations of the heating length and the wall temperature of the reactor were possible to achieve the prescribed CVD temperature. Under the simulated CVD conditions, the present model predicted an average carbon deposition rate of 5 × 10−13 kg/m2 s, which corresponded to the yield of ∼0.005 g of CNFs per g of ACFs. The simulation results of this study are important for the optimization of the CVD operating conditions to achieve a high and uniform CNF growth in the vertical reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号