首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A layered double hydroxide (LDH) hydrotalcite-pyroaurite solid-solution series Mg3(AlxFe1 − x)(CO3)0.5(OH)8 with 1 − x = 0.0, 0.1……1.0 was prepared by co-precipitation at 23 ± 2 °C and pH = 11.40 ± 0.03. The compositions of the solids and the reaction solutions were determined using ICP-OES (Mg, Al, Fe, and Na) and TGA techniques (CO32−, OH, and H2O). Powder X-ray diffraction was employed for phase identification and determination of the unit cell parameters ao and co from peak profile analysis. The parameter ao = bo was found to be a linear function of the composition. This dependency confirms Vegard's law and indicates the presence of a continuous solid-solution series in the hydrotalcite-pyroaurite system. TGA data show that the temperatures at which interlayer H2O molecules and CO32− anions are lost, and at which dehydroxylation of the layers occurs, all decrease with increasing mole fraction of iron within the hydroxide layers.Features of the Raman spectra also depend on the iron content. The absence of Raman bands for Fe-rich members (xFe > 0.5) is attributed to possible fluorescence phenomena.Based on chemical analysis of both the solids and the reaction solutions after synthesis, preliminary Gibbs free energies of formation have been estimated. Values of ΔG°f(hydrotalcite) = − 3773.3 ± 51.4 kJ/mol and ΔG°f(pyroaurite) = − 3294.5 ± 95.8 kJ/mol were found at 296.15 K. The formal uncertainties of these formations constants are very high. Derivation of more precise values would require carefully designed solubility experiments and improved analytical techniques.  相似文献   

2.
La(1−x)SrxFeO3 (x = 0.2,0.4) powders were prepared by a stearic acid combustion method, and their phase structure and electrochemical properties were investigated systematically. X-ray diffraction (XRD) analysis shows that La(1−x)SrxFeO3 perovskite-type oxides consist of single-phase orthorhombic structure (x = 0.2) and rhombohedral one (x = 0.4), respectively. The electrochemical test shows that the reaction at La(1−x)SrxFeO3 oxide electrodes are reversible. The discharge capacities of La(1−x)SrxFeO3 oxide electrodes increase as the temperature rises. With the increase of the temperature from 298 K to 333 K, their initial discharge capacity mounts up from 324.4 mA h g−1 to 543.0 mA h g−1 (when x = 0.2) and from 147.0 mA h g−1 to 501.5 mA h g−1 (when x = 0.4) at the current density of 31.25 mA g−1, respectively. After 20 charge-discharge cycles, they still remain perovskite-type structure. Being similar to the relationship between the discharge capacity and the temperature, the electrochemical kinetic analysis indicates that the exchange current density and proton diffusion coefficient of La(1−x)SrxFeO3 oxide electrodes increase with the increase of the temperature. Compared with La0.8Sr0.2FeO3, La0.6Sr0.4FeO3 electrode is a more promising candidate for electrochemical hydrogen storage because of its higher cycle capacity at various temperatures.  相似文献   

3.
The effects of substitution of (Zn1/3Nb2/3) for Ti on the sintering behavior and microwave dielectric properties of Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (0 ≤ x ≤ 4) ceramics have been investigated. The dielectric constant (?r) and the temperature coefficient of the resonant frequency (τf) of Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 ceramics decreased with increasing x. However, the Q × f values enhanced with the substitution of (Zn1/3Nb2/3) for Ti. It was found that a small amount of MnCO3-CuO (MC) and ZnO-B2O3-SiO2 (ZBS) glass additives to Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (x = 2) ceramics lowered the sintering temperature from 1250 to 900 °C. And Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (x = 2) ceramics with 1 wt% MC and 1 wt% ZBS sintered at 900 °C for 2 h showed excellent dielectric properties: ?r = 53, Q × f = 14,600 GHz, τf = 6 ppm/°C. Moreover, it has a chemical compatibility with silver, which made it as a promising material for low temperature co-fired ceramics technology application.  相似文献   

4.
A method to reliably compute the solid solubility in supercritical fluids is described. The method is based on computing all the possible roots of equifugacity equation at given temperature and pressure through homotopy continuation. The equifugacity equation is reformulated through global fixed-point homotopy. The global fixed-point homotopy guarantees that all the solutions of a non-linear equation can be located on a single homotopy path when it is forced to start from a single starting point. The starting point is selected from a criterion which minimizes the number of real roots of the global fixed-point homotopy function. Homotopy continuation-based formulation of equifugacity equation is also used to directly generate the solubility-pressure and solubility-temperature bifurcation diagrams by selecting either pressure or temperature as continuation parameter. These bifurcation diagrams provide a direct pathway to locate the cross-over pressures. The effect of equation of state model parameters on solid solubility through homotopy continuation based sensitivity analysis is also analyzed. Peng Robinson Stryjek Vera equation of state with conventional and Wong-Sandler mixing rules are used.  相似文献   

5.
(1 − x)ZnAl2O4xTiO2 (x = 0.21) ceramics were synthesized at 1500 °C for 3 h using the solid-state reaction at a heating rate from 1 to 7 °C/min. The effects of heating rate on the microstructure, phase composition and oxidation state of titanium in the ceramics were investigated. The XRD results show that this system is composed of two phases, i.e. ZnAl2O4 spinel and rutile. The “black core” phenomenon resulting from reduction of Ti4+ ion valence appears after the ceramics are sintered at the speed of 1 and 3 °C/min. As the heating rate increases, the density and quality factor (Q·f) increase initially and reach the maximum value when the heating rate is 5 °C/min, and then reduce quickly to the minimum, while the dielectric constant (?r) and temperature coefficient of resonator frequency (τf) nearly do not change. The optimal microwave dielectric properties can be achieved in (1 − x)ZnAl2O4xTiO2 (x = 0.21) ceramics sintered at a heating rate of 5 °C/min with an ?r value of 11.6, a Q·f value of 74,000 GHz (at about 6.5 GHz), and a τf value of −0.4 ppm/°C.  相似文献   

6.
Gd2(Zr1−xNbx)2O7+x (0 ≤ x ≤ 0.2) ceramics are prepared via the solid state reaction process at 1973 K for 10 h in air. Gd2(Zr1−xNbx)2O7+x (x = 0.1, 0.2) ceramics exhibit an ordered pyrochlore-type structure, whereas Gd2Zr2O7 has a defective fluorite-type structure. The electrical property of Gd2(Zr1−xNbx)2O7+x ceramics is investigated by electrochemical impedance spectroscopy over a frequency range of 10 Hz to 8 MHz from 623 to 923 K. The electrical conductivity obeys the Arrhenius equation. The grain conductivity of Gd2(Zr1−xNbx)2O7+x ceramics varies with doping different Nb contents, and exhibits a maximum at the Nb content of x = 0.1 in the temperature range of 623-923 K. The conductivity in hydrogen atmosphere is a little bit higher than in air in the temperature range of 723-923 K, which indicates that the doping of Zr4+ by Nb5+ can increase the proton-type conduction and reduce the oxide-ionic conduction. The conduction of Gd2(Zr1−xNbx)2O7+x is not a pure oxide-ionic conductor.  相似文献   

7.
Composite ceramics based on (1 − x)Mg2TiO4-xCaTiO3-y wt.% ZnNb2O6 (x = 0.12-0.16, y = 0-8) were prepared by a conventional mixed-oxide route. Zn2+ partially replaced Mg2+ in Mg2TiO4 and formed the spinel-structured (Mg1−δZnδ)2TiO4 phase. Nb2+, is known to be solid soluble in CaTiO3, was found to change its shape from cubic to pliable. A bi-phase system (Mg1−δZnδ)2TiO4 and CaTiO3 exhibited in all samples, where a small amount of second phase Mg1−δZnδTiO3 was also detected. The microwave dielectric properties of specimens were strongly related to ZnNb2O6 and CaTiO3 content. As y increased, ?r and τf decreased, however, Q × f decreased to a minimum value and started to increase thereafter. It was also found that ?r and τf increased and Q × f decreased with increasing x. The optimized microwave dielectric properties with ?r = 18.37, Q × f = 31,027 GHz (at 6 GHz), and τf = 0.51 ppm/°C were achieved for (1 − x)Mg2TiO4-xCaTiO3-y wt.% ZnNb2O6 (x = 0.12, y = 4) sintered at 1360 °C for 6 h.  相似文献   

8.
Co-doped Li3V2−xCox(PO4)3/C (x = 0.00, 0.03, 0.05, 0.10, 0.13 or 0.15) compounds were prepared via a solid-state reaction. The Rietveld refinement results indicated that single-phase Li3V2−xCox(PO4)3/C (0 ≤ x ≤ 0.15) with a monoclinic structure was obtained. The X-ray photoelectron spectroscopy (XPS) analysis revealed that the cobalt is present in the +2 oxidation state in Li3V2−xCox(PO4)3. XPS studies also revealed that V4+ and V3+ ions were present in the Co2+-doped system. The initial specific capacity decreased as the Co-doping content increased, increasing monotonically with Co content for x > 0.10. Differential capacity curves of Li3V2−xCox(PO4)3/C compounds showed that the voltage peaks associated with the extraction of three Li+ ions shifted to higher voltages with an increase in Co content, and when the Co2+-doping content reached 0.15, the peak positions returned to those of the unsubstituted Li3V2(PO4)3 phase. For the Li3V1.85Co0.15(PO4)3/C compound, the initial capacity was 163.3 mAh/g (109.4% of the initial capacity of the undoped Li3V2(PO4)3) and 73.4% capacity retention was observed after 50 cycles at a 0.1 C charge/discharge rate. The doping of Co2+into V sites should be favorable for the structural stability of Li3V2−xCox(PO4)3/C compounds and so moderate the volume changes (expansion/contraction) seen during the reversible Li+ extraction/insertion, thus resulting in the improvement of cell cycling ability.  相似文献   

9.
The electrooxidation of adsorbed and bulk solution of 10−2 M ethanol and D6-ethanol at polycrystalline platinum, smooth, roughened and Ru modified Pt(3 3 2), Pt(3 3 1) and Pt(1 1 1) electrodes was studied by on-line differential electrochemical mass spectroscopy (DEMS) using a dual thin layer flow through cell.On polycrystalline Pt, the main (or even single) product is acetaldehyde; due to the flow through conditions the amount of acetaldehyde further oxidized to acetic acid is negligible. At stepped single crystals with (1 1 1) terraces (Pt(s)[n(1 1 1) × (1 1 1)], acetic acid is produced at a lower potential than acetaldehyde. This demonstrates that in addition to the reaction path involving C-C bond splitting leading to CO2 (via adsorbed CO and CHx) and the reaction path leading to acetaldehyde there is a third, direct reaction path leading to the formation of acetic acid.Step decoration by Ru does not lead to an increased reactivity. This is different from the strong cocatalytic effect of Ru at step sites on the oxidation of CO. Furthermore, Ru does not influence the relative amount of acetaldehyde formed.  相似文献   

10.
Yuushou Nakayama  Kenta Sasaki 《Polymer》2009,50(20):4788-2103
Catalytic behavior of tetrahydroborate complexes of rare earth metals, Ln(BH4)3(THF)x (1: Ln = La, x = 3; 2: Ln = Pr, x = 2; 3: Ln = Nd, x = 3; 4: Ln = Sm, x = 3; 5: Ln = Y, x = 2.5; 6: Ln = Yb, x = 3), for ring-opening polymerization (ROP) of six-membered cyclic esters, δ-valerolactone (VL) and d,l-lactide (d,l-LA), was studied. The controlled polymerization of VL with 1-6 proceeded in THF at 60 °C. The catalytic activities of these complexes for the ROP of VL were observed to be in order of the ionic radii of the metals: 1(La) ≥ 2(Pr) ≥ 3(Nd) > 4(Sm) > 5(Y) > 6(Yb). The obtained polymers were demonstrated to be hydroxy-telechelic by 1H NMR and MALDI-TOF MS spectroscopy. The controlled ROP of d,l-LA also proceeded by these complexes. The activities of these complexes for the d,l-LA ROP were also in order of the ionic radii of the metals.  相似文献   

11.
The diopside ceramics with a formula of Ca(Mg1−xAlx)(Si1−x/2Alx/2)2O6 (x=0.01–0.3) were synthesized via a traditional solid-state reaction method, and their solid solubility, sintering behavior and microwave dielectric properties were investigated. The results revealed that the solubility limit of Al2O3 in Ca(Mg1−xAlx)(Si1−x/2Alx/2)2O6, which is defined as x, was between 0.15 and 0.2, and a second phase of CaAl2SiO6 presented when the x value reached 0.2. Appropriate Al3+ substitution for Mg2+ and Si4+ could promote the sintering process and lower the densification temperature, and a broadened densification temperature range of 1250–1300 °C was obtained for the compositions of x=0.08–0.15. With the increase of the x value, the dielectric constant (εr) increased roughly linearly, and the temperature coefficient of frequency (τf) showed a rising trend. The Q×f values increased from 57,322 GHz to 59,772 GHz as the x value increased from 0.01 to 0.08, and then they were saturated in the range of x=0.08–0.2. Further increase of the x value (x≥0.25) deteriorated the microwave dielectric properties. Good microwave dielectric properties of εr=7.89, Q×f=59,772 GHz and τf=−42.12 ppm/°C were obtained for the ceramics with the composition of x=0.08 sintered at 1275 °C.  相似文献   

12.
C. Amovilli  N.H. March 《Carbon》2005,43(8):1634-1642
Recent work of Schröder and Hyldgaard leads us to propose for the interaction energy per unit length ?(dR) between two parallel C nanotubes of equal radii R at distance d, the approximate scaling property ?(dR) = f(R)d−5I(R/d) where I is known. The function f(R) is expected to be model dependent. Contact is then made with the classic study of Girifalco et al. In addition, some results are presented for interaction energy between ‘almost spherical’ C cages. Specifically considered are (i) the HOMO-LUMO gap and (ii) bounds on polarizabilities.  相似文献   

13.
This work has developed a simple, robust, and fast method for the solution of Underwood's equation f(x) for minimum reflux. The new scheme involves devising an iterative solver g by re-arranging this equation, obtaining a secondary function equal to g − x, and finally applying Ostrowski's fourth-order technique to find the roots of this function. The use of Ostrowski's method in place of Newton's popular second-order formula requires little extra calculation per iteration other than a function value at an auxiliary point. The novel method is successful where the direct applications of Newton's and Ostrowski's solvers to Underwood's equation fail. It keeps iterations within bounds and rapidly converges to the root of interest.  相似文献   

14.
D. Kilburn  G. Dlubek  J. Pionteck 《Polymer》2006,47(22):7774-7785
Free volume data from positron annihilation lifetime spectroscopy (PALS) experiments are combined with a Simha-Somcynsky (S-S) equation of state analysis of pressure-volume-temperature (PVT) data to model free volume contributions to structural mobility in a series of poly(n-alkyl methacrylate)s. From the PALS data the glass transition temperature, Tg, decreases (from 382 to 224 ± 5 K) and a given mean free volume is observed at lower temperatures as the side-chain length increases (going from methyl- to hexyl-). This is evidence of an internal plasticization whereby the side-chains reduce effective packing of molecules. By comparing PALS and PVT data, the hole number per mass unit, Nh′, is calculated using different methods; this varies between 0.54 and 0.86 × 1021 g−1. It is found that the extrapolated free volume becomes zero at a temperature T0′ that is smaller than the Vogel temperature T0 of the α-relaxation. The α-relaxation frequencies can be fitted by the free volume theory of Cohen and Turnbull, but only when the free volume Vf is replaced by (Vf − ΔV) where ΔV( = Ef(T0 − T0′), Ef is the thermal expansivity of Vf) varies between 0.060 and 0.027 ± 0.003 cm3/g, decreasing with side-chain length, apart from poly(n-hexyl methacrylate) where ΔV increases to 0.043 ± 0.003 cm3/g. One possible interpretation of this is that the α-relaxation only occurs when, due to statistical reasons, a group of m or more unoccupied S-S cells are located adjacent to one another. m is found to vary between 8 and 2 for poly(methyl methacrylate) and poly(n-butyl methacrylate), respectively. We found that no specific feature in the free volume expansion was consistently in coincidence with the dynamic crossover.  相似文献   

15.
A series of ZnxMg1 − xGa2O4:Co2+ spinels (x = 0, 0.25, 0.5, 0.75, and 1.0) was successfully produced through low-temperature burning method by using Mg(NO3)2·4H2O, Zn(NO3)2·6H2O, Ga(NO3)3·6H2O, CO(NH2)2, NH4NO3, and Co(NO3)2·6H2O as raw materials. The product was characterized by X-ray diffraction, transmission electron microscopy, and photoluminescence spectroscopy. The product was not merely a simple mixture of MgGa2O4 and ZnGa2O4; rather, it formed a solid solution. The lattice constant of ZnxMg1 − xGa2O4:Co2+ (0 ≤ x ≤ 1.0) crystals has a good linear relationship with the doping density, x. The synthesized products have high crystallinities with neat arrays. Based on an analysis of the form and position of the emission spectrum, the strong emission peak around the visible region (670 nm) can be attributed to the energy level transition [4T1(4P) → 4A2(4F)] of Co2+ in the tetrahedron. The weak emission peak in the near-infrared region can be attributed to the energy level transition [4T1(4P) → 4T2(4F)] of Co2+ in the tetrahedron.  相似文献   

16.
Effects of ionizable groups in hydrogels of copolymer networks on the volumetric contraction-expansion process were investigated. Polymer networks used were: copoly[N-isopropylacrylamide (NIPA)(1 − x)/acrylic acid (HAc) or sodium acrylate (NaAc)(x)] with mole fraction of minor component (x) assuming 0.0114 and 0.0457. From the temperature (T) dependence of total volume of gels, densities of the polymer and solvent (water) components, and stoichiometry, we evaluated (1) the volume of gels occupied by a single mean polymeric residue and associated water molecules (expressed in units of nm3), mean vsp(gel), and (2) number of water molecules per single mean polymeric residue, mean Ns(gel), from near 273 K to 323 K. These quantities (1) and (2) listed above showed how acid and salt forms affect differently on volumetric changes of gels over 50 K. We developed an approach to evaluate volumetric changes of gels solely caused by a single polymeric residue of a minor component (x < 0.05) plus associated water by applying thermodynamic first-order perturbation theory. They are specific vsp(gel)(T) for a single HAc or NaAc polymeric residue plus associated water and the corresponding specific Ns(gel)(T). Specific vsp(gel)(HAc or NaAc)(T) and the corresponding specific Ns(gel(T)) revealed specific characteristics in thermal behavior near their respective transition temperatures from the swollen to shrunken states. We found these thermal changes shown at the nano-scale match very well with specific changes in the molality(T) of both ionizable groups. In fact, these are directly triggered by varying contents of water in gels. Based on the understanding of dissociative equilibrium attained by ionizable groups, we successfully replaced Na+ in hydrogels of copoly[NIPA(1 − x)/NaAc(x)] (x = 0.0457) by hydrogen ions. Absence of Na+ in treated hydrogels was experimentally verified by 23Na NMR and Na atomic absorption flame photometry. Discontinuity in the volumetric contraction-expansion process from the swollen to shrunken states and vice versa was not observed in contradiction to the previous reports [Hirotsu S, Hirokawa Y, Tanaka T. J Chem Phys 1987;87:1392-5. Matsuo SE, Tanaka T. J Chem Phys 1988;89:1695-703.] obtained by the conventional swelling experiments.  相似文献   

17.
A model was proposed to calculate several thermodynamic parameters for the initial-stage sintering of an alumina powder obtained after calcinations at 900 °C for 2 h of a precursor. The precursor was synthesized by an alumina sulphate-excess urea reaction in boiling aqueous solution. The cylindrical compacts of the powder with a diameter of 14 mm were prepared under 32 MPa by uniaxial pressing using oleic acid (12% by mass) as binder. The compacts were fired at various temperatures between 900 and 1400 °C for 2 h. The diameter (D) of the compacts before and after firing was measured by a micrometer. The D value after firing was taken as a sintering equilibrium parameter. An arbitrary sintering equilibrium constant (Ka) was calculated for each firing temperature by assuming Ka = (Di − D) / (D − Df), where Di is the largest value before sintering and Df is the smallest value after firing at 1400 °C. Also, an arbitrary change in Gibbs energy (ΔG a°) was calculated for each temperature using the Ka value. The graphs of ln Kavs. 1 / T and ΔG a° vs. T were plotted, and the real change in enthalpy (ΔH°) and the real change in entropy (ΔS°) were calculated from the slopes of the obtained straight lines, respectively. Inversely, real ΔG° and K values were calculated using the real ΔH° and ΔS° values in the ΔG° = − RT ln K = ΔH° − TΔS° relation. The best fitting ΔH° and ΔS° values satisfying this relation were found to be 157,301 J mol− 1 and 107.6 J K 1 mol 1, respectively.  相似文献   

18.
Taro Sonobe 《Fuel》2008,87(3):414-421
The pyrolysis behaviors of several agricultural residues have been investigated by using thermogravimetric analysis. The evolving rates of the gaseous products during the pyrolysis such as H2, CH4, H2O, CO and CO2 were also measured by the TG-MS techniques. Without any assumption and mathematical fitting, we could obtain the very proper kinetic parameters (the distribution curve of activation energy, f(E), and the activation energy dependent frequency factor, k0(E)) of biomass pyrolysis by utilizing the distributed activation energy model (DAEM) proposed by Miura and Maki [Miura K, Maki T. Energ Fuel 1998;12:864]. The peaks of f(E) curve for rice straw, rice husk, corncob and cellulose were found to be 170, 174, 183, and 185 kJ/mol, respectively. The k0 value increased from an order of 1011 to an order of 1018 s−1, while E increased from 120 to 250 kJ/mol. The catalytic effects of alkali and alkaline earth metals during the pyrolysis play a major role in the variation of f(E) curve among the different biomass species.  相似文献   

19.
In this study the development of blue ceramic dyes from compositions based on phosphate structures have been investigated. The replacement of cobalt by copper or iron to minimize the Co content have been considered. MFeO(PO4) (M = Co, Cu) solid solutions have been obtained with Co1−xCuxFeOPO4 (0 ≤ x ≤ 1) compositions prepared from gels and fired at 1000 °C/2 h. Co1−xCuxFeOPO4 compositions are not indicated to minimize the Co content in ceramic dyes because they decompose in glazed samples and pinhole defect is obtained. From FeCoOPO4–2FePO4 compositions, Co3Fe4(PO4)6 structure introduces the Co2+ ions into glassy matrix and suitable blue materials are obtained. In the conditions of this study, optimal cobalt amount is about 10 wt% Co from Co1−xFe1+xO1−x(PO4)1+x (x ≈ 0.6) compositions.  相似文献   

20.
Electrical properties of LaxM6O12+1.5x (M = Si, Ge) as an electrolyte for solid oxide fuel cell (SOFC) have been investigated. In LaxSi6O12+1.5x and LaxGe6O12+1.5x of x = 8–11, the highest conductivities were achieved at x = 9.7 (La9.7Si6O26.55) and x = 9.0 (La9.0(GeO4)6O1.5), respectively. The conductivity of La9.0(GeO4)6O1.5 was higher than that of La9.7Si6O26.55 in a temperature region higher than 700 °C, and the conductivity (2.4 × 10−3 S cm−1) of La9.7Si6O26.55 at 400 °C was higher than that (8.3 × 10−5 S cm−1) of La9.0(GeO4)6O1.5. The power densities of SOFC (H2 | Pt | electrolyte (thickness: 1 mm) | Pt | O2) using La9.0(GeO4)6O1.5 as an electrolyte were 14.3 mW cm−2 (700 °C) and 24.0 mW cm−2 (800 °C). The corresponding SOFC using La9.7Si6O26.55 was found to work even at lower temperatures of 400 and 500 °C with power densities of 0.011 and 0.12 mW cm−2. The SOFC (H2 | Ni–Sm0.2Ce0.8O1.9 | electrolyte | Ba0.5Sr0.5Co0.8Fe0.2O2.5 | air) using 0.3 mm thickness La9.7Si6O26.55 electrolyte gave the 3.4 mW cm−2 power density at 500 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号