首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 46 毫秒
1.
赵力 《电子器件》2012,35(6):723-726
纯方位目标跟踪是一个重要的研究课题。它要解决的问题是:利用含有噪声的方位数据来估计目标的真实运动轨迹。本文提出了一种基于粒子群优化的改进粒子滤波算法。这种算法可以将最新的观测值引入观测估计,提高了预估精度,减少所需的粒子数,从而实现对目标真实运动轨迹更好的跟踪。  相似文献   

2.
针对粒子滤波运算量大,硬件复杂性高的问题,该文提出了一种用于纯方位跟踪的简化粒子滤波算法,该算法引入了一种新的基于阈值的重采样方法,降低了硬件实现的复杂度。在算法研究的基础上,论文研究了基于FGPA的硬件电路实现方法,给出了系统的整体硬件结构及重采样/采样模块的实现方案,讨论了粒子滤波硬件实现的资源优化及时间优化问题。仿真结果表明,对于纯方位跟踪问题,该粒子滤波算法具有优于扩展Kalman滤波器(EKF)的性能;硬件电路实验表明,该滤波器可以实现对被动目标的纯方位跟踪,并具有比通用粒子滤波器较快的处理速度。  相似文献   

3.
粒子滤波是一种基于蒙特卡罗采样和递推贝叶斯估计的滤波方法,不受模型非线性和非高斯噪声的限制,因而被用于各种非线性滤波和参数估计问题。但是对于先验信息较少和信噪比较低的问题,其庞大的计算量和缓慢的速度限制了它在实时系统中的应用。这里介绍了粒子滤波基本原理,通过改进权重计算、重采样算法,使计算速度得到提高。这种改进算法用于对海洋远距离纯方位目标进行跟踪仿真,其结果表明,具有速度快,精度高的特点。  相似文献   

4.
文章将多模粒子滤波算法用于机动目标纯方位跟踪,通过估计模型的概率而不是寻找最优算法去进行局部线性化和表征非高斯后验密度,从而减小了近似误差。在仿真研究中,与IMM—EKF的比较验证了多模粒子滤波处理机动目标纯方位跟踪问题的优越性。  相似文献   

5.
针对被动传感器跟踪系统非线性较强问题,提出了一种基于改进高斯混合粒子滤波的被动传感器目标跟踪算法。该算法基于Sigma点卡曼滤波和粒子滤波的特点,用有限的高斯混合模型来近似后验状态密度、系统噪声和观测噪声的分布。然后结合遗传算法和EM算法来实现模型的降阶,克服了EM算法假定混合成分数为已知、迭代的结果需要依赖初始值、可能收敛到局部最大点或可能收敛到参数空间的边界的缺点,从而改善粒子枯竭的问题。仿真实验结果表明在被动传感器跟踪领域,与传统粒子滤波、基于EM的高斯混合粒子滤波和基于贪心EM的高斯混合粒子滤波相比,该算法在保持高精度估计能力的同时,具有较强的鲁棒性,是解决非线性系统状态估计问题的一种有效方法。  相似文献   

6.
针对水下被动目标跟踪的非高斯噪声环境和弱可观性的特点,提出了将粒子滤波算法应用于水下被动目标跟踪的思路.该算法直接利用传感器获得的含有噪声的角度数据,通过改进极坐标系下的系统方程得到目标状态的后验概率分布,来估计目标的运动状态.仿真结果表明该算法提高了滤波的稳定性,跟踪精度优于扩展卡尔曼滤波算法和无迹卡尔曼滤波算法.  相似文献   

7.
首先介绍了粒子滤波的基本理论和状态分离技术,并将两者结合起来得到一种新的粒子滤波改进算法:PF-SP-PEKF算法.该算法提供了一种全新的寻找提议分布途径,所得提议分布在计算量适中、便于执行的前提下,更接近目标真实分布.将新算法应用到水下系统纯方位目标运动分析领域中,联合多模型方法得到MMPF-SP算法,对水下机动目标...  相似文献   

8.
针对单站被动目标跟踪的无距离信息,多假设距离粒子滤波方法利用多个粒子滤波的并行运算,对不同初始距离的粒子滤波器进行计算,利用各子滤波的残差概率对并行处理的粒子滤波运算进行自适应采样实现单站纯方位目标跟踪,并与粒子滤波、多假设距离滤波方法进行比较,仿真结果表明该算法收敛速度快,跟踪精度高。  相似文献   

9.
近年来,仅利用纯方位量测下的多无人机对运动目标进行协同定位与跟踪技术研究受到了广泛关注.在目标位置未知的情况下,现有的对运动目标的纯方位估计策略以及观测器机动控制策略性能仍不够理想.该文针对多无人机研究了一种用于目标定位的无偏估计器,以及用于控制多无人机在以目标为中心的圆周上形成等角编队的控制器.提出了一种用于估计目标...  相似文献   

10.
为处理纯方位跟踪(BOT)中的非线性问题,提出了一种Unscented粒子滤波(UPF)跟踪方法。在使用Unscented变换的基础上,利用UPF来加入最新的观测量并产生非线性粒子滤波(PF)的建议分布。结合纯方位跟踪模型,推导了UPF应用的具体算法步骤,使用匀速运动和机动目标两个BOT仿真实例,与其它滤波器进行了仿真对比,分析了跟踪性能和误差。仿真结果表明,对于纯方位跟踪问题,UPF不仅解决了扩展卡尔曼滤波器的线性化损失难题,而且与PF等粒子滤波器相比,具有更高的跟踪精度。  相似文献   

11.
基于伪线性卡尔曼滤波的多站IRST系统跟踪技术   总被引:8,自引:0,他引:8  
建立了目标的多站IRST(红外搜索与跟踪)系统的伪线性观测模型,基于该模型提出了匀速运动目标的伪线性卡尔曼滤波算法.算法利用伪线性方程组获得滤波器的初值,从而提高了滤波器的跟踪精度和速度.分别采用伪线性卡尔曼滤波器与推广卡尔曼滤波器对目标进行跟踪的仿真结果表明:当探测器数目为3、4时,在跟踪初始阶段.曲线性卡尔曼滤波器在跟踪的速度和精度方面均优于推广卡尔曼滤波器,在稳定阶段,两者的性能基本相仿.当探测器数目为6时,则不论是在跟踪的初始阶段,还是在稳定阶段,伪线性卡尔曼滤波器与推广卡尔曼滤波器的性能基本相同.  相似文献   

12.
本文提出了一种用于非线性系统的多传感器分布式推广卡尔曼滤波算法,该算法中系统的动态方程和传感器的观测方程分别围绕全局估计和全局预测线性化,融合中心基于所有传感器观测的全局估计由各传感器基于自身观测的局部估计来重构。算法分析说明,全局估计的精度高、误差小。最后介绍了文中算法在雷达和红外两种传感器跟踪机动目标中的应用,仿真结果验证了该算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号