首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
近几年来,东方红-15一类小四轮拖拉机使用面广,深受用户欢迎.但是,这样一台小拖拉机,其噪声却很大.在机手耳旁处的噪声高达96dB(A),车外噪声也有86dB(A).为了保护环境和机手健康,研究降低该机噪声实属必要.  相似文献   

2.
微型客车某款发动机的噪声源识别与结构改进   总被引:3,自引:0,他引:3  
随着微型客车的广泛使用和产品的激烈竞争,噪声问题显得更加突出。本文采用整车的分别运行法获得微型客车的常用某款发动机排气噪声、发动机燃烧噪声、发动机机械噪声、变速器噪声及其它噪声源噪声,而发动机台架声强测试、发动机悬架及油底壳振动测试发现,油底壳是发动机噪声的主要辐射源,消声器插入损失试验结果发现消声器有很大的改进空间。为此对消声器和发动机油底壳进行结构改进,消声器改进后的消声量和原结构相比,都大幅提高,最大约28dB(A),最小也有20dB(A),而改进后油底壳的各阶模态频率都有不同幅度的提高,尤其一阶、六阶都有50%以上的提高,最小的是第三、四阶,也有10.6%的提高。改进后的车外行驶加速噪声由78dB(A)降到73.5dB(A),车内噪声品质主观评价也显著提高。  相似文献   

3.
随着微型客车的广泛使用和产品的激烈竞争,噪声问题显得更加突出。采用整车的分别运行法识别出某款微型客车常用发动机排气噪声、发动机燃烧噪声、发动机机械噪声、变速器噪声及其它噪声源噪声,通过发动机台架声强测试、发动机悬架及油底壳振动测试发现,油底壳是发动机噪声的主要辐射源,根据消声器插入损失试验结果发现消声器有很大的改进空间。为此对消声器和发动机油底壳进行结构改进,消声器改进后的消声量和原结构相比大幅提高,最大约28 dB(A),最小也有20 dB(A),而改进后油底壳的各阶模态频率都有不同幅度的提高,尤其1阶、6阶都增大50%以上,即使增加幅度最小的3、4阶也有10.6%的提高。改进后车外行驶加速噪声由78 dB(A)降到73.5 dB(A),车内噪声品质主观评价也显著改善。  相似文献   

4.
针对某国产小型纯电动汽车在40 km/h~80 km/h全加速工况下车内噪声较大问题,通过整车噪声测试和分析,确认噪声主要来源于驱动电机。结合永磁同步电机噪声机理分析和电机的零部件台架试验结果,进一步判定其噪声由阶次噪声和高频谐波频率噪声构成。针对不同的噪声产生机理,通过电机壳体结构优化和电机控制策略来降低车内噪声。改进前后结果表明:改进后驾驶员内耳声压级降低2 dB(A)~5 dB(A),基本消除了电机啸叫噪声,车内声品质大幅提升。  相似文献   

5.
钢管厂热镀锌车间噪声源识别与控制   总被引:1,自引:0,他引:1  
通过对某钢管厂热镀锌车间噪声源测量与分析,指出内吹管及风机是主要的环境噪声污染源,研究了内吹管工艺特征与气流噪声控制策略,优化了风机噪声控制方案.噪声治理工程实施结果表明,内吹管气流噪声瞬时峰值降低了10~15dB(A),风机噪声等效声级值降低了25dB(A),厂界噪声瞬时峰值降低了20dB(A)以上,收到了良好的工程效果.  相似文献   

6.
针对出口欧洲的国产某型号拖拉机驾驶室内存在的异常噪声问题,提出利用频谱分析对异常噪声特性进行辨识,并利用壁板贡献度分析对引起异常噪声的主要机构进行排序,通过理论分析结合测试试验,为拖拉机驾驶室降噪措施的制定提供了有效的参考意见。经工程实践验证,所提方法可以有效消除驾驶室内异常噪声,同时降低驾驶员耳旁噪声2 d B(A),具有一定工程应用价值。  相似文献   

7.
油底壳表面辐射噪声占发动机总辐射噪声的20 %左右,已成为降低发动机噪声的重要制约因素。以铸铝油底壳为例用有限元模型计算约束模态,并对结果进行综合性分析,识别出油底壳的结构薄弱位置。然后采取加筋,和底部进行形状上的结构优化,得到一种油底壳的最佳结构设计方案。经计算优化后的油底壳,第一阶约束模态频率提高了56 %,且在2 000 Hz内的阶数减少了3阶。最后通过实验测试对比表明:发动机整机1 m声压级均值,在油底壳优化后,由原来的76.7 dB(A)降到75.6 dB(A),降低了1.1 dB(A),有一定的效果。  相似文献   

8.
根据特种发动机排气噪声的特性和消声器的安装要求,设计了一个组合式排气消声器.运用流体计算软件FLUENT和声学有限元软件SYSNOISE对消声器的内部流场和声场进行了仿真计算和分析.仿真结果表明:排气消声器能显著降低发动机排气口的气流速度和排气噪声,平均消声量可达21dB(A).  相似文献   

9.
本文以常州客车厂生产的CJ642B大型客车为对象,通过对车内主要噪声源的识别和噪声分布特性的测试,重点对发动机罩进行了合理的结构改进,同时对车内最高噪声分布区域——驾驶区进行了阻尼结构处理,在标准条件下,使该车车内最高噪声级由原来的86dB(A)降至75dB(A),取得显著效果。  相似文献   

10.
为降低制氧机的运行噪声,在对制氧机的壳体振动和辐射噪声测试分析后,发现主要的噪声源是壳体振动和空气压缩泵工作噪声。根据制氧机结构振动的传递路径,在空气压缩泵和底板之间加装弹簧减振装置,同时在壳体内表面粘贴隔声吸声材料。试验结果表明,降噪措施能有效减小制氧机结构振动,降低工作噪声,降噪后制氧机工作状态噪声由51.9 dB(A)降低到44.3 dB(A)。  相似文献   

11.
高速旋转的光纤复绕机,复绕速度为Am/min噪声为83.2dB(A),当复绕速度提高7%后,噪声为84.8dB(A),复绕速度提高14%后,噪声将达到86.2dB(A),通过对复绕机筛选轮进行动平衡校正以及对复绕机进行隔声和吸声处理后,当复绕速度为A时,噪声降低了8.7dB(A),为声源降噪提供了新的经验。  相似文献   

12.
高速列车引起的环境噪声及声屏障测试分析   总被引:1,自引:0,他引:1  
对武广客运专线上高速运行列车引起的环境噪声及声屏障降噪效果进行了实测,测得大量噪声数据.通过分析得到以下结论:高速列车的机车辐射噪声随列车速度的增大而增大;通过路基段时的辐射噪声为82.8~91.8 dB(A),通过桥梁段时为79.3~89.6 dB(A),随着桥梁和路基高度的逐渐增大,辐射噪声略有减小的趋势;噪声频率主要集中在低频段(f=40~80 Hz)和中频段(f=500~8 000 Hz),与桥梁区段相比,路基区段随频率的增加声能量衰减较为平缓.近期路基段铁路边界噪声值在60~65 dB(A),桥梁段为55~60dB(A);中期(2018年)边界噪声的预测噪声值较近期值有明显增大,最大值接近规范限值.路基声屏障降噪效果为6~8 dB(A),桥梁声屏障降噪效果为6~7 dB(A);声屏障越高降噪效果越明显,3.15 m高声屏障降噪效果较2.65 m高声屏障提升2 dB(A)左右.  相似文献   

13.
摩托车噪声控制的研究   总被引:1,自引:0,他引:1  
本文在对Q150摩托车振动及噪声测量的基础上,通过对消声排气系统和发动机悬挂系统的分析和改进,将摩托车定置噪声从89dB(A)降为83dB(A),提高了摩托车的乘坐的舒适性。  相似文献   

14.
为了解车轮结构对转向架区域噪声的影响,基于RAYNOISE软件平台,建立转向架区域噪声预测模型。利用该模型,预测了转向架区域内侧及外侧各场点的噪声,分析了动/拖车车轮、车轮制动盘以及低噪声阻尼车轮对转向架区域各场点噪声的影响。预测结果表明:动车车轮、拖车车轮两种车轮结构对钢轨噪声的影响很小,而车轮噪声及转向架区域的噪声影响显著,直型辐板的动车车轮结构能较好地降低轮轨噪声及转向架区域噪声,有利于降低车外噪声。当车辆运行速度为200 km/h、250 km/h时,安装车轮制动盘有利于减小转向架区域各场点噪声,场点4位置降噪量分别达到0.4 dB(A)和0.9 dB(A)。低噪声阻尼车轮可以在一定程度上降低转向架区域各场点的噪声,三种阻尼车轮分别使场点4位置的降噪量达到8.0 dB(A)、8.0 dB(A)、4.6 dB(A)。  相似文献   

15.
阐述多重相干法传递路径分析的基本理论、整车路面噪声分解试验分析流程和该方法适用工况.以某SUV汽车为分析对象,成功分解出运行工况下该车4个车轮对驾驶员左耳处噪声的贡献量,基于上述贡献量的合成噪声与实测噪声在整个分析频率范围内,绝对误差和平均误差均小于1 dB(A),使方法的有效性和准确性得到验证.  相似文献   

16.
徐州矿务局韩桥煤矿东风井建于1964年,该风井安装有二台2K-60-5NO.24轴流抽风机.经测定,风井噪声最大值为114dB(A),最高扰民噪声达87.1dB(A),超过二类混合区标准30dB(A)以上.多年来,风井噪声严重污染着周围的环境,影响了居民的工作、学习和休息.另外,电机房、风机房内噪声也很高,达96dB(A),值班人员难以忍受,反映强烈.  相似文献   

17.
某型号拖拉机的发动机进气系统噪声过大,严重影响驾驶员身心健康,需对其进行降噪设计。首先,基于试验测试,分析进气噪声特征。其次,基于直通穿孔管消声理论,将直通穿孔管结构看做一种共振消声单元,提出并设计一种针对宽频带噪声的多腔共振型消声器结构。同时,采用声学有限元软件Virtual.Lab对该消声器声学性能进行仿真研究。最后,将该消声器加装在实车上进行试验验证。结果表明,数值模拟结果与试验结果能较好吻合,所设计的消声器能明显降低发动机进气噪声,消声量达到15 d B(A),优于国标要求。  相似文献   

18.
某型号冰箱压缩机运转时存在噪声值偏大问题。为降低噪声,采用对比测试分析法对5种不同工况下的样机进行了噪声频谱测试与声源识别,确认气动噪声为主要声源,机械噪声为次要声源,而电磁噪声对整机影响较小。气动噪声为排气管内高速高压气体产生周期性气流脉动和气流喷注噪声,呈宽频分布特征,峰值频率为2 000 Hz,对应噪声值为49.3 d B(A)。此外,压缩机激振频率引发排气管低频振动。提出设置排气管消声器与安装弯管减振弹簧等改进措施,与改进前测试结果比较,改进后2 000 Hz处峰值噪声下降13.8 dB(A),整机噪声降低1.83 dB(A)。  相似文献   

19.
复声强分析系统在车外表面辐射噪声源识别中的应用   总被引:1,自引:0,他引:1  
根据复声强测量基本原理,提出基于LabVIEW软件开发平台,自行开发复声强分析系统.并利用该系统及声强分析软件对某型轻型卡车进行声强测量和声场分析,给出车外辐射表面的3D声貌图、等声强图,方便地对该表面辐射噪声源进行精确的定位和识别,提出控制车外噪声的相应策略,并作遮蔽发动机噪声的模拟试验,最终结果使车外加速噪声降低3.8dB(A).对降低该型卡车车外噪声提供有利的参考依据.  相似文献   

20.
以某城市轨道交通B型车为研究对象,通过现场实测分析不同速度条件下司机室内和客室内噪声时域变化规律和频谱特性。基于统计能量分析理论建立B型车车内噪声预测模型,通过实测结果对比验证模型的准确性,最后研究车体结构及轮轨噪声源对车内总声压级的贡献率。结果表明:所建立的车内噪声预测模型可以较为准确地预测城市轨道交通车内噪声,且计算效率高。列车速度从75 km/h增大到115 km/h,司机室内噪声增大3.9 dB(A)~5.2 dB(A),客室声压级增大3.6 dB(A)~5.2 dB(A);列车车速每增大10 km/h,司机室内声压级增大约1.36 dB(A),客室内声压级增大约0.9 dB(A)~1.0 dB(A);车内转向架上方测点声压级大于车厢中部噪声,差值为0.3 dB(A)~1.7 dB(A)。车内噪声源主要来自于轮轨噪声和车体底板声辐射,车体侧墙、车门和车窗对车内声压级的贡献整体较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号