首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An increasing body of evidence suggests that much of the trace metal contamination observed in coastal waters is no longer derived from point-source inputs, but instead originates from diffuse, non-point sources. Previous research has shown that water temperature and dissolved oxygen regulate non-point source processes such as sediment diagenesis; however, limited information is available regarding the effect of these variables on toxic trace metal cycling and speciation in natural waters. Here, we present data on the seasonal variation of dissolved Cu cycling in the Long Island Sound, an urban estuary adjacent to New York City. An operationally defined chemical speciation technique based on kinetic lability and organic complexation has been applied to examine the most ecologically relevant metal fraction. In contrast to the decrease from spring to summer observed in the total dissolved Cu pool (average +/- SD: 15.1 +/- 4.4 nM in spring and 11.8 +/- 3.5 nM in summer), our results revealed that in the highly impacted western LIS, levels of labile Cu reached higher levels in summer (range 3.6-7.7 nM) than in spring (range 1.5-3.9 nM). Labile Cu in surface waters of the western Sound appeared to have a wastewater source during spring high flow conditions, coinciding with elevated levels of sewage-derived Ag. Labile Cu elsewhere in the LIS during spring apparently resulted from fluvial input and mixing. During summer, labile Cu increased in bottom waters (at one site, bottom water labile Cu increased from 1.5 nM in spring to 7.7 nM in summer), and covariance with tracers of diagenetic remobilization (e.g., Mn) revealed a sedimentary source. Although total dissolved Cu showed no consistent trends with water quality parameters, labile Cu in bottom waters showed an inverse correlation with dissolved oxygen and a positive, exponential correlation with water temperature. These results suggest that future increases in coastal water temperatures may cause the benthic source of labile Cu to become proportionally more significant.  相似文献   

2.
154 commercially available natural mineral waters were analysed for their content of dissolved manganese (Mn(II)). 114 bottles were marked “deironized” (geogenic iron removed). Unexpectedly, waters rich in mangenese were more frequent among the deironized waters than among the non-deironized ones. Almost 20% of all waters contained more than 0,20 mg/l Mn(II), a toxicologically justified limit value with respect to formula-fed infants. Two waters which were declared as “adapted for the preparation of infant food” contained even more than 1,0 mg/l Mn(II). It is proposed to legally prescribe the declaration of manganese on the bottle. For reasons of preventive public health care, waters with more than 0,20 mg/l Mn(II) are not considered as suitable for the preparation of infant food.  相似文献   

3.
Detailed examination of the water column, sediments, and interstitial waters was conducted in Balmer Lake, Ontario, Canada, in 1993-1994 and 1999 in order to assess the seasonal and interannual controls governing the behavior of As. High-resolution profiles of dissolved (<0.45 microm) Fe, Mn, SO4(2-), and sigmaH2S across the sediment-water interface indicate the presence of reducing conditions in close proximity to the benthic boundary during ice-free periods, which are characterized by fully oxygenated bottom waters. Dissolved As is remobilized as As(III) in suboxic sediment horizons via the redox-controlled dissolution of Fe (and perhaps Mn) oxide phases. During 1993-1994, As fluxes to the water column were relatively low (2-15 microg cm(-2) year(-1)) and contributed between 2 and 18% of the water column inventory. Dissolved As in the lake waters was derived primarily from external mining-related loadings during this period. Between 1993 and 1999, external loadings of As to Balmer Lake decreased while [As]aq within the lake increased, suggesting an increase in the proportion of sediment-derived As. Indeed, benthic dissolved As fluxes in 1999 ranged from 179 to 380 microg cm(-2) year(-1), representing approximately 33-60% of the water column burden. The relatively recent importance of sedimentary arsenic sources is suggested to reflect changes to sediment redox conditions associated with a postulated increase in lake primary productivity. Ironically, the increased contribution of dissolved arsenic to the water column appears to have resulted from an otherwise improvement in water quality. Reduced loadings of Cu, Zn, and Ni to the lake since 1994 appear to have allowed increased phytoplankton production that has stimulated arsenic release.  相似文献   

4.
Manganese oxidation induced by water table fluctuations in a sand column   总被引:1,自引:0,他引:1  
On-off cycles of production wells, especially in bank filtration settings, cause oscillations in the local water table, which can deliver significant amounts of dissolved oxygen (DO) to the shallow groundwater. The potential for DO introduced in this manner to oxidize manganese(II) (Mn(II)), mediated by the obligate aerobe Pseudomonas putida GB-1, was tested in a column of quartz sand fed with anoxic influent solution and subject to 1.3 m water table changes every 30-50 h. After a period of filter ripening, 100 μM Mn was rapidly removed during periods of low water table and high dissolved oxygen concentrations. The accumulation of Mn in the column was confirmed by XRF analysis of the sand at the conclusion of the study, and both measured net oxidation rates and XAS analysis suggest microbial oxidation as the dominant process. The addition of Zn, which inhibited GB-1 Mn oxidation but not its growth, interrupted the Mn removal process, but Mn oxidation recovered within one water table fluctuation. Thus transient DO conditions could support microbially mediated Mn oxidation, and this process could be more relevant in shallow groundwater than previously thought.  相似文献   

5.
In batch culture experiments we examined oxidation of As(III) and adsorption of As(III/V) by biogenic manganese oxide formed by a manganese oxide-depositing fungus, strain KR21-2. We expected to gain insight into the applicability of Mn-depositing microorganisms for biological treatment of As-contaminated waters. In cultures containing Mn2+ and As(V), the solid Mn phase was rich in bound Mn2+ (molar ratio, approximately 30%) and showed a transiently high accumulation of As(V) during the early stage of manganese oxide formation. As manganese oxide formation progressed, a large proportion of adsorbed As(V) was subsequently released. The high proportion of bound Mn2+ may suppress a charge repulsion between As(V) and the manganese oxide surface, which has structural negative charges, promoting complex formation. In cultures containing Mn2+ and As(III), As(III) started to be oxidized to As(V) after manganese oxide formation was mostly completed. In suspensions of the biogenic manganese oxides with dissolved Mn2+, As(III) oxidation rates decreased with increasing dissolved Mn2+. These results indicate that biogenic manganese oxide with a high proportion of bound Mn2+ oxidizes As(III) less effectively than with a low proportion of bound Mn2+. Coexisting Zn2+, Ni2+, and Co2+ also showed similar effects to different extents. The present study demonstrates characteristic features of oxidation and adsorption of As by biogenic manganese oxides and suggests possibilities of developing a microbial treatment system for water contaminated with As that is suited to the actual situation of contamination.  相似文献   

6.
Daily observations of dissolved aluminum, iron, and manganese in an estuary downstream of a coastal acid sulfate soil (CASS) catchment provided insights into how floods and submarine groundwater discharge drive wetland metal exports. Extremely high Al, Fe, and Mn concentrations (up to 40, 374, and 8 mg L(-1), respectively) were found in shallow acidic groundwaters from the Tuckean Swamp, Australia. Significant correlations between radon (a natural groundwater tracer) and metals in surface waters revealed that metal loads were driven primarily by groundwater discharge. Dissolved Fe, Mn, and Al loads during a 16-day flood triggered by a 213 mm rain event were respectively 80, 35, and 14% of the total surface water exports during the four months of observations. Counter clockwise hysteresis was observed for Fe and Mn in surface waters during the flood due to delayed groundwater inputs. Groundwater-derived Fe fluxes into artificial drains were 1 order of magnitude higher than total surface water exports, which is consistent with the known accumulation of monosulfidic black ooze within the wetland drains. Upscaling the Tuckean catchment export estimates yielded dissolved Fe fluxes from global acid sulfate soil catchments on the same order of magnitude of global river inputs into estuaries.  相似文献   

7.
Biogeochemically modified pore waters from subterranean estuaries, defined as the mixing zone between freshwater and saltwater in a coastal aquifer, are transported to coastal waters through submarine groundwater discharge (SGD). SGD has been shown to impact coastal and perhaps global trace metal budgets. The focus of this study was to investigate the biogeochemical processes that control arsenic cycling in subterranean estuaries. Total dissolved As, as well as a suite of other trace metals and nutrients, were measured in a series of wells and sediment cores at the head of Waquoit Bay, MA. Dissolved As ranged from below detection to 9.5 microg/kg, and was associated with plumes of dissolved Fe, Mn, and P in the groundwater. Sedimentary As, ranging from 360 to 7500 microg/kg, was highly correlated with sedimentary Fe, Mn, and P. In addition, amorphous Fe (hydr)oxides were more efficient scavengers of dissolved As than the more crystalline forms of solid-phase Fe. Given that dissolved As in the surface bay water was lower than within the subterranean estuary, our results indicate that the distribution and type of Fe and Mn (hydr)oxides in coastal aquifers exert a major influence on the biogeochemical cycling of As in subterranean estuaries and, ultimately, the fate of groundwater-derived As in marine systems influenced by SGD.  相似文献   

8.
A 2-mL microbenthic chamber was fitted with a microelectrode for the in-situ determination of benthic fluxes of S(-II), I-, O2, Mn(II), and Fe(I). Detection was by voltammetry using a battery operated potentiostat and a gold microelectrode. The chamber was fitted on a Perspex plate to be placed on sediments. Because of the small chamber volume, benthic fluxes could be determined in a few hours rather than days, without the need for sample extraction. Tests on homogenized sediments in the laboratory showed fluxes of 17.1+/-1.8 nmoles cm(-2) min(-1) S(-II) and 1.3+/-0.2 nmoles cm(-2) min(-1) Mn. Benthic fluxes of oxygen and iodide were determined in situ in the field. The oxygen flux was negative (consumption) at a rate of -4.9+/-0.5 nmoles cm(-2) min(-1) O2. The I- flux was initially negative in oxygenated waters at a rate of -30+/-3 pmoles cm(-2) min(-1) and subsequently turned positive to a rate of 12+/-1 pmoles cm(-2) min(-1) when the oxygen concentration dropped. The rate of change in the microbenthic chamber was sufficiently quick to complete a flux measurement within minutes.  相似文献   

9.
Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and associated ecological impacts. Numeric nutrient water quality standards are needed to protect coastal waters from eutrophication impacts. The Environmental Protection Agency determined that numeric nutrient criteria were necessary to protect designated uses of Florida's waters. The objective of this study was to evaluate a reference condition approach for developing numeric water quality criteria for coastal waters, using data from Florida. Florida's coastal waters have not been monitored comprehensively via field sampling to support numeric criteria development. However, satellite remote sensing had the potential to provide adequate data. Spatial and temporal measures of SeaWiFS OC4 chlorophyll-a (Chl(RS)-a, mg m(-3)) were resolved across Florida's coastal waters between 1997 and 2010 and compared with in situ measurements. Statistical distributions of Chl(RS)-a were evaluated to determine a quantitative reference baseline. A binomial approach was implemented to consider how new data could be assessed against the criteria. The proposed satellite remote sensing approach to derive numeric criteria may be generally applicable to other coastal waters.  相似文献   

10.
Rivers with high biological productivity typically show substantial increases in pH and dissolved oxygen (DO) concentration during the day and decreases at night, in response to changes in the relative rates of aquatic photosynthesis and respiration. These changes, coupled with temperature variations, may impart diel (24-h) fluctuations in the concentration of trace metals, nutrients, and other chemical species. A better understanding of diel processes in rivers is needed and will lead to improved methods of data collection for both monitoring and research purposes. Previous studies have used stable isotopes of dissolved oxygen (DO) and dissolved inorganic carbon (DIC) as tracers of geochemical and biological processes in streams, lakes, and marine systems. Although seasonal variation in 6180 of DO in rivers and lakes has been documented, no study has investigated diel changes in this parameter. Here, we demonstrate large (up to 13%o) cycles in delta18O-DO for two late summer sampling periods in the Big Hole River of southwest Montana and illustrate that these changes are correlated to variations in the DO concentration, the C-isotopic composition of DIC, and the primary productivity of the system. The magnitude of the diel cycle in delta18O-DO was greater in August versus September because of the longer photoperiod and warmer water temperatures. This study provides another biogeochemical tool for investigating the O2 and C budgets in rivers and may also be applicable to lake and groundwater systems.  相似文献   

11.
During their growth, bivalves are recognized to archive minor and trace elements within their shells which may reflect environmental conditions at the sediment-water interface (SWI). Shells from juvenile Great Scallops (Pecten maximus (L.)), which develop a daily calcite growth layer, were collected in the Bay of Seine (France) and examined by matrix-matched LaserAblation ICP-MS analysis for Mn concentrations along their growth period, from April to October (year 2004). The backdated Mn concentration profiles were compared with environmental variables (e.g., temperature, salinity, chlorophyll a, oxygen, etc.) measured continuously at monitoring stations in riverine, estuarine, and coastal waters. The objective was first to perform microanalyses of Mn composition along the shell reflecting episodic enrichment or depletion in such environment, and second, to depict Mn cycling and inputs at the SWI according to the measured profiles. Basically, Mn concentration profiles mostly depend on established estuarine and coastal biogeochemical processes that lead to an increase of dissolved Mn concentration available for shell uptake. Potential particulate Mn fluxes from the Seine River, that control both particulate and dissolved Mn input to the bay, are strongly correlated with shell Mn concentrations from April to July (?r = 0.95, n = 8, p < 0.05). In late summer, riverine inputs can not only provide an explanation for the shell Mn enrichments which suggest additional sources of Mn. During this period, two other processes also contribute to the release of dissolved Mn in coastal waters and the increase of shell Mn content: (1) successive redox oscillations within the high turbidity zone of the macrotidal Seine estuary and (2) postbloom reductive conditions developed at the SWI of the Seine Bay under periodic seasonal eutrophication. This study demonstrates that incremental Mn concentrations profiles in scallop shells are a relevant natural archive to evaluate the processes governing Mn inputs into coastal environments at a daily scale.  相似文献   

12.
Mercury (Hg) and methylmercury (MeHg) are flushed from watersheds during hydrological events, contaminating downstream surface waters and resident fish populations. We monitored total mercury (THg), MeHg, and ancillary water chemistry parameters in two streams (Cedar Creek and Trott Brook) in east-central Minnesota on a weekly or semiweekly basis from April through October 2003. Heavy precipitation in late June resulted in discrete episodes of high concentrations (>1.2 ng/L) of MeHg in both streams in early July. The MeHg/THg ratio increased from 0.15 to 0.36 in Cedar Creek and from 0.13 to 0.46 in Trott Brook during the event. The high MeHg concentrations were accompanied by low dissolved oxygen concentrations and increased concentrations of dissolved organic carbon, Mn, Fe, and orthophosphate. A prolonged absence of precipitation during August and early September brought stream levels back to baseflow values, and MeHg concentrations decreased to less than 0.1 ng/L. These results suggest that warm-weather, high-discharge events are the primary route of export of MeHg from these watersheds, and baseflow contributes much less MeHg to downstream waters. The redox water chemistry during the,events sampled here suggests that MeHg in these streams is discharged from wetland areas where anoxic/anaerobic conditions prevail.  相似文献   

13.
Biogenic manganese oxides are common and an important source of reactive mineral surfaces in the environment that may be potentially enhanced in bioremediation cases to improve natural attenuation. Experiments were performed in which the uranyl ion, UO2(2+) (U(VI)), at various concentrations was present during manganese oxide biogenesis. At all concentrations, there was strong uptake of U onto the oxides. Synchrotron-based extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray diffraction (XRD) studies were carried out to determine the molecular-scale mechanism by which uranyl is incorporated into the oxide and how this incorporation affects the resulting manganese oxide structure and mineralogy. The EXAFS experiments show that at low concentrations (<0.3 mol % U, <1 microM U(VI) in solution), U(VI) is present as a strong bidentate surface complex. At high concentrations (>2 mol % U, >4 microM U(VI) in solution), the presence of U(VI) affects the stability and structure of the Mn oxide to form poorly ordered Mn oxide tunnel structures, similar to todorokite. EXAFS modeling shows that uranyl is present in these oxides predominantly in the tunnels of the Mn oxide structure in a tridentate complex. Observations by XRD corroborate these results. Structural incorporation may lead to more stable U(VI) sequestration that may be suitable for remediation uses. These observations, combined with the very high uptake capacity of the Mn oxides, imply that Mn-oxidizing bacteria may significantly influence dissolved U(VI) concentrations in impacted waters via sorption and incorporation into Mn oxide biominerals.  相似文献   

14.
Although the potential for KMnO4 to destroy chlorinated ethenes in situ was first recognized more than a decade ago, the geochemical processes that accompany the oxidation have not previously been examined. In this study, aqueous KMnO4 solutions (10-30 g/L) were injected into an unconfined sand aquifer contaminated by the dense non-aqueous-phase liquid (DNAPL) tetrachloroethylene (PCE). The effects of the injections were monitored using depth-specific, multilevel groundwater samplers, and continuous cores. Two distinct geochemical zones evolved within several days after injection. In one zone where DNAPL is present, reactions between KMnO4 and dissolved PCE resulted in the release of abundant chloride and hydrogen ions to the water. Calcite and dolomite dissolved, buffering the pH in the range of 5.8-6.5, releasing Ca, Mg, and CO2 to the pore water. In this zone, the aqueous Ca/Cl concentration ratio is close to 5:12, consistent with the following reaction for the oxidation of PCE in a carbonate-rich aquifer: 3C2Cl4 + 5CaCO3(s) + 4KMnO4 + 2H+ --> 11CO2 + 4MnO2(s) + H2O + 12Cl- + 5Ca2+ + 4K+. In addition to Mg from dolomite dissolution, increases in the concentration of Mg as well as Na may result from exchange with K at cation-exchange sites. In the second zone, where lesser amounts of PCE were present, KMnO4 persisted in the aquifer for more than 14 months, and the porewater pH increased graduallyto between 9 and 10 as a resultof reaction between KMnO4 and H2O. A small increase in SO4 concentrations in the zones invaded by KMnO4 suggests that KMnO4 injections caused oxidation of sulfide minerals. There are important benefits of carbonate mineral buffering during DNAPL remediation by in situ oxidation. In a carbonate-buffered system, Mn(VII) is reduced to Mn(IV) and is immobilized in the groundwater by precipitating as insoluble manganese oxide. Energy-dispersive X-ray spectroscopy analyses of the manganese oxide coatings on aquifer mineral grains have detected the impurities Al, Ca, Cl, Cu, Pb, P, K, Si, S, Ti, U, and Zn indicating that, similar to natural systems, precipitation of manganese oxide is accompanied by coprecipitation of other elements. In addition, the consumption of excess KMnO4 by reaction with reduced minerals such as magnetite will be minimized because the rates of these reactions increase with decreasing pH. Aquifer cores collected after the KMnO4 injections exhibit dark brown to black bands of manganese oxide reaction products in sand layers where DNAPL was originally present. Mineralogical investigations indicate that the manganese oxide coatings are uniformly distributed over the mineral grains. Observations of the coatings using transmission electron microscopy indicate that they are on the order of 1 microm thick, and consequently, the decrease in porosity through the formation of the coatings is negligible.  相似文献   

15.
FeS2 (pyrite) is known to react with water and dissolved molecular oxygen to form sulfate and iron oxyhydroxides. This process plays a large role in the environmentally damaging phenomenon known as acid mine drainage. An outstanding scientific issue has been whether the oxygen in the sulfate and oxyhydroxide product was derived from water and/or dissolved oxygen. By monitoring the reaction in situ with horizontal attenuated total reflectance infrared spectroscopy, it was found that when using 18O isotopically substituted water, the majority of the infrared absorbance due to sulfate product red-shifted approximately 70 cm(-1) relative to the absorbance of sulfate using H(2)16O as a reactant. Bands corresponding to the iron oxyhydroxide product did not shift. These results indicate water as the primary source of oxygen in the sulfate product, while the oxygen atoms in the iron oxyhydroxide product are obtained from dissolved molecular oxygen.  相似文献   

16.
A new kind of solid phase extraction (SPE), which we named in situ surfactant-based solid phase extraction (ISS-SPE), represents a simple, selective and rapid method for preconcentration and determination of manganese from food and water samples. This method has distinct advantages: extraction times are short and recoveries are high; further, we can see formation of fine particles of large specific surface and their good dispersion in the solution. In this work, a small amount of cationic surfactant, n-dodecyltrimethylammonium bromide (DTAB) was injected into the water sample containing Mn ions, which were complexed by 1-(2-pyridylazo)-2-naphthol (PAN). After shaking, a little volume of NaPF6 as an ion-pairing agent was added into the solution by a microsyringe. After preconcentration, the settled phase was dissolved in a specific volume of ethanol and then aspirated into the flame atomic absorption spectrometer by using a homemade microsample introduction system. The effective parameters such as pH, concentration of surfactant, concentration of chelating agent, concentration of ion-pairing agent and effect of salt concentration were optimized by a fractional factorial design to identify the most important parameters and their interactions, and central composite methodology was used to achieve the optimum point of effective parameters to the response. Under the optimum conditions, preconcentration of 10?ml of the sample solution permitted detection of 0.88???g?l?1 with enhancement factor of 45.6, and the relative standard deviation (RSD) for five determinations of Mn ions was 3.5%. The developed method was applied to the determination of trace manganese in various real samples with satisfactory results.  相似文献   

17.
The incorporation of multiple dissolved gas measurements in biogeochemical studies remains a difficult and expensive challenge. Incompatibilities in collection, handling, and storage procedures generally force the application of multiple sampling procedures for multiple gases. This paper introduces the concept and application of pumping-induced ebullition (PIE), a unified approach for routine measurement of multiple dissolved gases in natural waters and establishes a new platform for development of in situ real-time dissolved gas monitoring tools. Ebullition (spontaneous formation of bubbles) is induced by pumping a water sample through a narrow-diametertube (a "restrictor") to decrease hydrostatic pressure (PH) below total dissolved gas pressure (PT). Buoyancy is used to trap bubbles within a collection tower where gas accumulates rapidly (1 mL/min) to support multiple chemical analyses. Providing for field collection of an essentially unlimited and unified volume of gas sample, PIE afforded accurate and precise measurements of major (N2, 02, Ar), trace (CO2, N20, CH4) and ultratrace (CFC11, CFC12, CFC113, SF6) dissolved gases in Wisconsin groundwater, revealing interrelationships between denitrification, apparent recharge age-dates, and historical land use. Compared to conventional approaches, PIE eliminates multiple gas-specific sampling methods, reduces data computations, simplifies laboratory instrumentation, and avoids aqueous production and consumption of biogenic gases during sample storage. A lake depth profile for CO2 demonstrates PIE's flexibility as an in situ real-time platform for dissolved gas measurements. The apparent departures of some gases (SF6, H2, N2O, CO2) from solubility equilibrium behavior warrant further confirmation and theoretical investigation.  相似文献   

18.
In this study, five selected environmentally relevant phenolic endocrine disrupting chemicals (EDCs), estrone, 17β-estradiol, estriol, 17α-ethinylestradiol, and 4-n-nonylphenol, were shown to exhibit similarly appreciable reactivity toward potassium permanganate [Mn(VII)] with a second-order rate constant at near neutral pH comparable to those of ferrate(VI) and chlorine but much lower than that of ozone. In comparison with these oxidants, however, Mn(VII) was much more effective for the oxidative removal of these EDCs in real waters, mainly due to the relatively high stability of Mn(VII) therein. Mn(VII) concentrations at low micromolar range were determined by an ABTS [2,2-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid diammonium] spectrophotometric method based on the stoichiometric reaction of Mn(VII) with ABTS [Mn(VII) + 5ABTS → Mn(II) + 5ABTS(?+)] forming a stable green radical cation (ABTS(?+)). Identification of oxidation products suggested the initial attack of Mn(VII) at the hydroxyl group in the aromatic ring of EDCs, leading to a series of quinone-like and ring-opening products. The background matrices of real waters as well as selected model ligands including phosphate, pyrophosphate, NTA, and humic acid were found to accelerate the oxidation dynamics of these EDCs by Mn(VII). This was explained by the effect of in situ formed dissolved Mn(III), which could readily oxidize these EDCs but would disproportionate spontaneously without stabilizing agents.  相似文献   

19.
We investigated factors influencing the presence of the thiol glutathione (GSH) in estuarine waters. Our study addressed thiol phase-association, the biological release from algal cultures, and the role of copper in both thiol release and preservation. Our measurements in three diverse estuaries in the continental United States (San Diego Bay, Cape Fear Estuary, and Norfolk Estuary) show that dissolved GSH, present at sub-nanomolar levels, is preferentially partitioned into the ultra-filtrate fraction (<1 kDa) in comparison with dissolved organic carbon (DOC). Concentrations of GSH generally increased with increases in total copper (Cu)levels, although large variability was observed among estuaries. In 30-h exposure experiments, release of dissolved GSH from the diatom Thalassiosira weissflogii into organic ligand-free experimental media was a strong function of added Cu concentration. The released GSH increased from about 0.02 to 0.27 fmol/cell as Cu was increased from the background level (0.5 nM) to 310 nM in the modified Aquil media. However, excretion of GSH was lower (up to 0.13 fmol/cell) when cells were grown in surface waters of San Diego Bay, despite much higher total Cu concentrations. Experiments conducted in-situ in San Diego Bay water indicated that high concentrations of added Cu destabilized GSH, while both Mn(II) and natural colloids promoted GSH stability. In contrast, laboratory experiments in synthetic media indicated that moderate levels of added Cu enhanced GSH stability.  相似文献   

20.
A low-cost rapid screening tool for arsenic (As) and manganese (Mn) in groundwater is urgently needed to formulate mitigation policies for sustainable drinking water supply. This study attempts to make statistical comparison between tubewell (TW) platform color and the level of As and Mn concentration in groundwater extracted from the respective TW (n = 423), to validate platform color as a screening tool for As and Mn in groundwater. The result shows that a black colored platform with 73% certainty indicates that well water is safe from As, while with 84% certainty a red colored platform indicates that well water is enriched with As, compared to WHO drinking water guideline of 10 μg/L. With this guideline the efficiency, sensitivity, and specificity of the tool are 79%, 77%, and 81%, respectively. However, the certainty values become 93% and 38%, respectively, for black and red colored platforms at 50 μg/L, the drinking water standards for India and Bangladesh. The respective efficiency, sensitivity, and specificity are 65%, 85%, and 59%. Similarly for Mn, black and red colored platform with 78% and 64% certainty, respectively, indicates that well water is either enriched or free from Mn at the Indian national drinking water standard of 300 μg/L. With this guideline the efficiency, sensitivity, and specificity of the tool are 71%, 67%, and 76%, respectively. Thus, this study demonstrates that TW platform color can be potentially used as an initial screening tool for identifying TWs with elevated dissolved As and Mn, to make further rigorous groundwater testing more intensive and implement mitigation options for safe drinking water supplies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号