首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparation and processing of most of polymer/clay nanocomposites need high temperature. This limited the application of commonly used organic modifiers of long carbon-chain alkyl ammonium salts because of their low thermal stability. In this study, we synthesized two novel thermally stable, rigid-rod aromatic amines. Montmorillonite (MMT) treated by these amines exhibited larger layer-to-layer spacing, higher thermal stability than that treated by commonly used 1-hexadecylamine and also high ion-exchange ratio (>95%). They were applied to prepare nanocomposites with polyimide (PI) by in situ polymerization. XRD, TEM were used to obtain the information on morphological structure of PI/MMT nanocomposites. DMA, TGA, DSC, universal tester were applied to characterize the mechanical and thermal properties of the nanocomposites. When the MMT content was below 3 wt%, the PI/MMT nanocomposites were strengthened and toughened at the same time. The introduction of a small amount of MMT also led to improvement in thermal stability, slight increase in glass transition temperature, marked decrease in coefficient of thermal expansion and decrease in solvent uptake. MMT treated by these aromatic amines exhibited better dispersibility and (probably) interfacial interaction with PI matrix than that treated by 1-hexadecylamine. The nanocomposites based on these MMT resultantly exhibited better mechanical, thermal and solvent resistance properties than those based on 1-hexadecylamine treated MMT.  相似文献   

2.
In the article, acrylonitrile-butadiene-styrene/polyvinyl chloride/organophilic Fe-montmorillonite (ABS/PVC/Fe-OMT) nanocomposites were prepared by melt intercalation method. In order to determine if the presence of iron ion in the structure of organophilic montmorillonite (OMT) lattice can affect thermal, flame retardance and smoke suppressant properties in the ABS/PVC blends. ABS/PVC/organophilic natural montmorillonite (Na-OMT) nanocomposites were prepared as the comparable sample. Fe-MMT and Na-MMT were treated by cetyl trimethylammonium bromide (CTAB). The information on morphologies and structures of ABS/PVC/OMT nanocomposites was obtained using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal properties of the nanocomposites were characterized by thermogravimetric analysis, and flame retardant properties were obtained via limiting oxygen index (LOI), UL-94 vertical burning test and smoke density. The nanocomposites, based on Fe-OMT, exhibited better flame retardance, better smoke suppressant properties, and lower degradation degree than those of pure ABS/PVC blends and the ABS/PVC/Na-OMT nanocomposites.  相似文献   

3.
A polymeric flame retardant (PDEPD) and various amounts of sodium montmorillonite (Na‐MMT) nanocomposites with exfoliation structure were prepared via one‐step polycondensation, attempting to prepare flame‐retardant nanocomposites. The nanocomposites exhibited high thermal stability at high temperature. Based on several comparative studies, we investigated and proposed the possible exfoliation mechanism of Na‐MMT in PDEPD substrate. The microscale combustion calorimeter and cone calorimeter results showed the PDEPD/Na‐MMT nanocomposites could significantly improve the flame retardancy of polystyrene and polyurethane elastomer (TPU), especially the TPU matrix. This study provides new viewpoint for preparing flame‐retardant nanocomposites without surfactants. POLYM. COMPOS., 35:167–173, 2014. © 2013 Society of Plastics Engineers  相似文献   

4.
A novel bio‐based plasticizer containing flame retardant groups based on soybean oil (SOPE) was synthesized from epoxidized soybean oil (ESO) and diethyl phosphate through a ring‐opening reaction. PVC blends plasticized with ESO and SOPE were prepared, respectively. Properties including rheological behavior, thermal stability, flame retardant performance, mechanical properties of PVC plasticized with ESO and SOPE were carefully studied. The results showed that the plasticized PVC blends indicated better compatibility, thermal, and mechanical properties. As a novel bio‐based plasticizer containing flame retardant groups, the TGA data indicated that the thermal degradation temperature of PVC blends plasticized with SOPE could reach to 275.5°C. LOI tests and SEM indicated that the LOI value of PVC blends could increase from 24.2 to 33.6%, the flame retardant performance of SOPE was put into effect by promoting polymer carbonization and forming a consolidated and thick flame retardant coating quickly, which is effective to prohibit the heat flux and air incursion. The enhancement in flame retardancy will expand the application range of PVC materials plasticized with SOPE. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42111.  相似文献   

5.
A novel aromatic amine organo‐modifier synthesized in our previous work was used to treat montmorillonite (MMT) and the organo‐modified MMT was used to prepare poly(etherimide) (PEI)/MMT nanocomposites by a melt intercalation method. MMT treated by this amine exhibited large layer‐to‐layer spacing and a high ion‐exchange ratio (>95%). The nanocomposites were characterized with X‐ray diffraction (XRD), transmission electron microscopy (TEM), dynamic mechanical analysis, a universal tester, thermogravimetric analysis, and by differential scanning calorimetry. The results of XRD and TEM showed that the nanocomposites formed exfoliated structures even when the MMT content was 10 wt %. When the MMT content was below 3 wt %, the PEI/MMT nanocomposites were strengthened and toughened at the same time. The nanocomposites also showed marked decreases in coefficient of thermal expansion and solvent uptake. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1857–1863, 2003  相似文献   

6.
A novel plasticizer based on cardanol, hydrogenated cardanol glycidyl ether acetic ester containing phosphaphenanthrene group (HCGEP), was prepared and incorporated into poly(vinyl chloride) (PVC) for the first time. The molecular structure was characterized with Fourier transform infrared and 1H NMR spectroscopies. The thermal degradation behavior and flame retardant performance of PVC films with HCGEP as secondary or main plasticizer were investigated using thermogravimetric analysis, combustion tests, limiting oxygen index tests and morphological analysis of residues. Furthermore, the mechanical properties of PVC films were examined based on the results of tensile testing. The results were compared to those of the petroleum‐based plasticizer dioctyl phthalate. With the substitution of dioctyl phthalate with HCGEP, PVC films exhibited high thermal stability and better flame retardant performance. The tensile test results showed that the addition of HCGEP could endow PVC resin with well‐balanced properties of flexibility, strength and hardness. © 2017 Society of Chemical Industry  相似文献   

7.
Polymer/clay nanocomposites have some unique properties due to combination of flame resistance and improved mechanical and thermal stability properties which are important to enhance the material quality and performance. The objective of this work was to investigate the effect of organically modified montmorillonite (org‐MMT) on the thermal and flame retardant as well as hardness and mechanical properties of the nanocomposites based on the natural rubber (NR). It was shown that by the addition of 3 wt % of org‐MMT to NR, its aging hardness rise was decreased more than 55% and the ignition time was delayed about 150%. The reduction in heat release rate peak value was equal to 54% compared to the pristine NR. Addition of org‐MMT improved the thermal stability of the NR. Furthermore, nanocomposites which were calendared before curing showed much more thermal stability and fire resistance than those which contained similar amount of organoclay. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
On the basis of the fusion behavior of poly(vinyl chloride) (PVC), the influence of compounding route on the properties of PVC/(layered silicate) nanocomposites was studied. Four different compounding addition sequences were examined during the melt compounding of PVC with montmorillonite (MMT) clay, including (a) a direct dry mixing of PVC and nanoclay, (b) an addition of nanoclay at compaction, (c) an addition of nanoclay at the onset of fusion, and (d) an addition of nanoclay at equilibrium torque. Both unmodified sodium montmorillonite (Na+‐MMT) and organically modified montmorillonite (Org.‐MMT) clays were used, and the effect of the addition sequence of the clay during compounding on its dispersion in the matrix was evaluated by X‐ray diffraction and transmission electron miscroscopy. The surface color change, dynamic mechanical analysis, and flexural and tensile properties of PVC/clay nanocomposites were also studied. The experimental results indicated that both the extent of property improvement and the dispersion of nanoparticles in PVC/(layered silicate) nanocomposites are strongly influenced by the degree of gelation achieved in PVC compounds during processing. The addition of nanoclay to PVC must be accomplished at the onset of fusion, when PVC particles are reduced in size, in order to produce nanocomposites with better nanodispersion and enhanced mechanical properties. Overall, rigid PVC nanocomposites with unmodified clay (Na+‐MMT) were more thermally stable and exhibited better mechanical properties than their counterparts with organically modified clay (Org.‐MMT). J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

9.
Nanocomposites based on biodegradable poly(?‐caprolactone) (PCL) and layered silicates (montmorillonite, MMT) were prepared either by melt interaction with PCL or by in situ ring‐opening polymerization of ?‐caprolactone as promoted by the so‐called coordination‐insertion mechanism. Both non‐modified clays (Na+ ‐MMT) and silicates modified by various alkylammonium cations were studied. Mechanical and thermal properties were examined by tensile testing and thermogravimetric analysis. Even at a filler content as low as 3 wt% of inorganic layered silicate, the PCL‐layered silicate nanocomposites exhibited improved mechanical properties (higher Young's modulus) and increased thermal stability as well as enhanced flame retardant characteristics as a result of a charring effect. It was shown that the formation of PCL‐based nanocomposites depended not only on the nature of the ammonium cation and related functionality but also on the selected synthetic route, melt intercalation vs. in situ intercalative polymerization. Interestingly enough, when the intercalative polymerization of ?‐caprolactone was carried out in the presence of MMT organo‐modified with ammonium cations bearing hydroxyl functions, nanocomposites with much improved mechanical properties were recovered. Those hybrid polyester layered silicate nanocomposites were characterized by a covalent bonding between the polyester chains and the clay organo‐surface as a result of the polymerization mechanism, which was actually initiated from the surface hydroxyl functions adequately activated by selected tin (II) or tin (IV) catalysts.  相似文献   

10.
The mechanical properties and inflammability of polyamide 6 (PA6) nanocomposites incorporated with Montmorillonite organoclay (MMT) modified with thermal stable ionic liquid surfactants were investigated. The compatibility between ionic liquid‐treated MMT and PA6 matrix was improved and the intercalation morphology was achieved, which resulted in the increaseof tensile modulus. However, the addition of organo‐MMTs alone did not improve the inflammability of the PA6 nanocomposite, because of strong melt‐dripping behavior of PA6 matrix. Addition of auxiliary melamine polyphosphate (MPP) intumescent flame retardant to the nanocomposite prevented the melt dripping and enhanced inflammability performance. The enhanced inflammability of PA6/organoclay/MPP nanocomposites was attributed to the synergistic effect between imidazolium or phosphonium organo‐MMTs and intumescent flame retardant MPP. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40648.  相似文献   

11.
In this study, thermoplastic poly(ester ether) elastomer (TPEE) nanocomposites with phosphorus–nitrogen (P–N) flame retardants and montmorillonite (MMT) were prepared by melt blending. The fire resistance of the nanocomposites was analyzed by limiting oxygen index (LOI) and vertical burning (UL 94) tests. The results show that the addition of the P–N flame retardants increased the LOI of the material from 17.3 to 27%. However, TPEE containing P–N flame retardants only obtained a UL 94 V‐2 ranking; this resulted in a flame dripping phenomenon. On the other hand, TPEE containing the P–N flame retardant and organically modified montmorillonite (o‐MMT) achieved better thermal stability and good flame retardancy; this was ascribed to its partially intercalated structure. The synergistic effect and synergism were investigated by Fourier transform infrared spectroscopy and thermogravimetry. The introduction of o‐MMT decreased the inhibition action of the P–N flame retardant and increased the amount of residues. The catalytic decomposition effect of MMT and the barrier effect of the layer silicates are discussed in this article. The residues after heating in the muffle furnace were analyzed by scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and laser Raman spectroscopy. It was shown that the intercalated layer silicate structure facilitated the crosslinking interaction and promoted the formation of additional carbonaceous char residues in the formation of the compact, dense, folded‐structure surface char. The combination of the P–N flame retardant and o‐MMT in TPEE resulted in a better thermal stability and fire resistance because of the synergistic effect of the mixture. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41094.  相似文献   

12.
通过溶液浇铸法制备聚乳酸/蒙脱土/亚磷酸三苯酯(PLA/MMT/TPPi)复合膜.对其阻燃性能进行研究.结果表明:蒙脱土与亚磷酸三苯酯的协同阻燃效果明显,总添加量为1.5%时极限氧指数达到33.2%.力学测试、熟分析、缓冲溶液降解等分析结果表明:蒙脱土与亚磷酸三苯酯的加入对材料的力学性能、热性能和降解性能的影响较小.  相似文献   

13.
Nishizawa Technical Institute (NTI) and Kyoto Institute of Technology (KIT) have developed EVA‐clay nanocomposites with excellent mechanical and flame retardant properties by a reactive process and have succeeded in a novel method to synthesize an aluminium hydroxide nanoparticle, which has the effect of improving the flame retardancy of nanocomposites with EVA. About the EVA‐clay nanocomposites, the peak heat release rate (HRR) of sample MM2 (EVA‐clay partially processed nanocomposites) and sample MM3 (EVA‐clay completely processed nanocomposites) was reduced from 1/3 (one third) to 1/4 (one fourth) compared with EVA only. Sample AL‐1 (EVA‐aluminium nanocomposites) showed a more effective reduction of HRR than sample AL‐2 (EVA‐normal aluminium hydroxide). Beside these experiments, the orientation of the nanofiller MMT (montmorillonite) by a 2‐axis extruder equipped a special novel kneading roll head and the flame retardancy of silica nanocomposite coating materials (Sol‐Gel process) is discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Unsaturated polyester (UP) toughened nanocomposites were prepared using both sisal fibers and montmorillonite clays. The effect of fibers and Cloisite 30B (C30B) nanoclays on the mechanical properties, thermal stability, flame retardant, and morphological behavior of the UP toughened epoxy (Epoxy/UP) were systematically studied. The chemical structures of Epoxy, UP, and Epoxy/UP systems were characterized using Proton Nuclear magnetic resonance (1HNMR) and Fourier transform infrared (FTIR) spectra. The homogeneous dispersion of nanoclay within the polymer matrix was analyzed using transmission electron microscopy (TEM) and X‐ray diffraction (XRD) analysis. Incorporation of sisal fibers and C30B nanoclays within Epoxy/UP system resulted in an increase in the mechanical, thermal, and flame retardance properties. Thermogravimetric analysis (TGA) has been employed to evaluate the thermal degradation kinetic parameters of the composites using Kissinger and Flynn‐Wall‐Ozawa methods. Cone calorimeter, UL‐94, and LOI tests revealed a reduction in the burning rate of the matrix with the addition of fibers and nanoclays. The results showed that the treated fiber reinforced nanocomposites had higher thermal stability and better flame retardant properties than the treated fiber reinforced composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42068.  相似文献   

15.
Polymeric nanocomposites were synthesized from unsaturated polyester (UPE) matrix and montmorillonite (MMT) clay using an in situ free radical polymerization reaction. Organophilic MMT was obtained using a quaternary salt of coco amine as intercalant having a styryl group making it a reactive intercalant. The resultant nanocomposites were characterized via X‐ray diffraction and transmission electron microscopy. The effect of increased nanofiller loading on the thermal and mechanical properties of the nanocomposites was investigated. All the nanocomposites were found to have improved thermal and mechanical properties as compared with neat UPE matrix, resulting from the contribution of nanolayer connected intercalant‐to‐crosslinker which allows a crosslinking reaction. It was found that the partially exfoliated nanocomposite structure with an exfoliation dominant morphology was achieved when the MMT loading was 1 wt %. This nanocomposite exhibited the highest thermal stability, the best dynamic mechanical performance and the highest crosslinking density, most probably due to more homogeneous dispersion and optimum amount of styrene monomer molecules inside and outside the MMT layers at 1 wt % loading. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Thermal stability of polyvinyl chloride (PVC) based montmorillonite composites with either sodium montmorillonite (MMT) or alkyl ammonium ion modified montmorillonite (OMMT) were investigated by thermogravimetric analysis. The apparent activation energies associated with the first thermal degradation stage were calculated by the methods of Flynn–Wall–Ozawa and Kissinger in nitrogen atmosphere at several different heating rates. The processing thermal stability of PVC and PVC/MMT(OMMT) composites was also discussed. Increase of mixing torque did not result in a larger intercalation extent of PVC on MMT; instead, it unexpectedly induced discoloration of PVC and then deteriorated the processing stability, especially in the presence of OMMT. The apparent activation energies in the first thermal degradation stage exhibited little difference among PVC, PVC/MMT, and PVC/OMMT composites, and the kinetic compensation effect of Sp* kept a constant value, indicating that the thermal stability and thermal degradation mechanism of PVC were not affected by the presence of either MMT or OMMT, although the processing discoloration of PVC is observed for PVC/OMMT composite. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1521–1526, 2004  相似文献   

17.
An alkylammonium intercalated montmorillonite (A‐MMT) was modified by edge grafting with 3‐glycidoxypropyltrimethoxysilane. In comparison with poly(ethylene terephthalate) (PET)/A‐MMT, the resultant grafted clay, S‐A‐MMT, exhibited improved miscibility with PET matrix and revealed better dispersion state in the melting compounded PET/S‐A‐MMT nanocomposites. As a result, the PET/S‐A‐MMT nanocomposite had slower degradation rate owing to the enhanced clay barrier effect. Meanwhile, the nanocomposite exhibited lower degradation onset temperature under nitrogen because of the clay catalysis effect, which can be explained by the decreasing degradation reaction energy calculated from Coats–Redfern method of degradation kinetics. In the other hand, nanocomposite with better clay dispersion state exhibited increasing thermal oxidative stability due to clay barrier effect of hindering oxygen to diffuse in, which accorded with the continuous and compact char surface formed during polymer degradation. The clay catalysis and barrier effect of silicate layers were presented directly in isothermal oxidative TGA experiment. Furthermore, the mechanical and crystallization properties of PET/clay nanocomposites were investigated as well. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

18.
In this article, the combination of silicone rubber (SR) elastomer with synthetic iron montmorillonite (Fe‐MMT) to form a kind of new flame‐retardant system based on an ethylene–vinyl acetate (EVA) copolymer is first reported. Also, the flame retardancy of the EVA/SR/Fe‐MMT hybrid are compared with that of EVA/SR/natural sodium montmorillonite. The structures of the nanocomposites were characterized with X‐ray diffraction and transmission electron microscopy. Cone calorimeter tests and thermogravimetric analysis were used to evaluate the flame‐retardant properties and thermal stability of the composites, respectively. In addition, tensile tests were carried out with a universal testing machine, and the morphology of the fracture surface was observed with environmental scanning electron microscopy. We found that SR/organophilic montmorillonite (Fe‐OMT) was more effective in reducing the primary peak heat release rate of the nanocomposite, and the EVA/SR/Fe‐OMT hybrid had a higher thermal stability in the deacetylated polymer than EVA/SR/sodium organophilic montmorillonite. Moreover, the exfoliated EVA/SR/Fe‐OMT nanocomposite displayed excellent mechanical properties because of a better dispersion of Fe‐OMT in the polymer matrix, and a possible mechanism is discussed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Flame‐retardant polyvinylchloride (FRPVC),typically used in cable insulation and jacketing construction for multi‐purpose reactor (MPR) at Atomic Energy Authority of Egypt, as well as carbon‐black FRPVC (CB‐FRPVC) and nonflame‐retardant PVC and CB‐PVC materials produced by Egyptian Electrical Cable Company (EECC), have been irradiated up to 160 KGy, at room temperature with a 60Co gamma source. Free‐volumes and thermal stability of irradiated and nonirradiated PVC samples have been examined using positron annihilation Lifetime Spectroscopy (PALS) and thermogravimetric analysis (TGA). In addition, the mechanical properties: tensile strength and elongation at break were examined. Considerable presence of flame‐retardant and carbon black additives in CB‐FRPVC sample led to both quenching and inhibition of Ps formation. The mechanical and thermal characterization showed that irradiation of PVC samples up to 80 KGy effectively induced cross‐linking to maxima. Higher doses then after results in degradation and thus a decrease in mechanical strength. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
The flame retardant and smoke suppressant properties of semirigid PVC treated with calcium carbonate (CaCO3), tin oxide (SnO2), the mixture of CaCO3/SnO2 and SnO2‐coated CaCO3 have been studied through the limiting oxygen index, char yield, and smoke density rating (SDR) methods. The thermal degradation in air of the treated semirigid PVC was studied by thermogravimetry (TG) and differential thermal analysis (DTA) from ambient temperature to 1073 K. The morphologies of the additives and the char formation were studied through SEM. The mechanical property was also studied. The results showed that the semirigid PVC treated with SnO2‐coated CaCO3 has a higher limiting oxygen index and char yield, lower SDR and MSDR, a more compact structure of char formation than the semirigid PVC without flame retardant and the semirigid PVC with the equivalent CaCO3, or SnO2, or the mixture of CaCO3/SnO2, a similar tensile property and greatly improved impact strength compared with that of the semirigid PVC without flame retardant. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 731–738, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号