共查询到20条相似文献,搜索用时 11 毫秒
1.
The copolymerization of butadiene (Bd) and isoprene (Ip) with a supported titanium‐triisobutyl aluminum catalyst system was studied. An analysis using differential scanning calorimetry, X‐ray diffraction, and 13C‐NMR spectra indicated that products with 25–60 mol % Bd units were random copolymers and that the melting temperatures and glass‐transition temperatures (Tg) were 30–40 and ?74°C (or thereabout), respectively, which were very similar to those of natural rubber. The chemical structure of these copolymers was characterized by a high‐trans 1,4‐configuration: the trans 1,4‐content of Ip units was greater than 98%, and the trans 1,4‐content of Bd units was greater than 90%. The reactivity ratio of Bd was greater than that of Ip (rBd = 5.7 and rIp = 0.17). The sequence distribution of the monomer units of the copolymers followed a first‐order Markov statistical model. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1800–1807, 2003 相似文献
2.
Eun‐Soo Park Hye Kyung Kim Jae Hun Shim Hun Sik Kim Lee Wook Jang Jin‐San Yoon 《应用聚合物科学杂志》2004,92(6):3508-3513
Poly(L ‐lactide) (PLLA) and poly(3‐hydrobutyrate‐co‐3‐hydroxyvalerate) (PHBV) were blended with poly(butadiene‐co‐acrylonitrile) (NBR). Both PLLA/NBR and PHBV/NBR blends exhibited higher tensile properties as the content of acrylonitrile unit (AN) of NBR increased from 22 to 50 wt %. However, two separate glass transition temperatures (Tg) appeared in PLLA/NBR blends irrespective of the content of NBR, revealing that PLLA was incompatible with NBR. In contrast, a single Tg, which shifted along with the blend composition, was observed for PHBV/NBR50 blends. Moreover NBR50 suppressed the crystallization of PHBV, indicating that PHBV was compatible with NBR50. Decrease of both elongation modulus and stress at maximum load was less significant and increase of elongation at break was more pronounced in PHBV/NBR50 blends than in PLLA/NBR50 blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3508–3513, 2004 相似文献
3.
In this study we reported synergic activity of a novel secondary accelerator N‐Benzylimine aminothioformamide (BIAT) along with tetramethylthiuram disulfide (TMTD) in improving cure and mechanical properties of gum and filled mixes of Styrene‐Butadiene Rubber (SBR). The feasibility of application of BIAT in sulfur vulcanization of an ideal blend of SBR and natural rubber (NR) has also been investigated. The mechanical properties like t ensile strength, tear resistance, hardness, compression set, and abrasion loss were measured. Swelling values were also determined as a measure of crosslink densities of the vulcanizates. The binary accelerator system BIAT‐TMTD was found very effective in improving cure properties of the mixes of pure SBR and a 50/50 blend of SBR and NR.There was also found simultaneous improvement in mechanical properties of vulcanizates of both pure and blend. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
4.
Poly(methyl methacrylate‐co‐butyl methacrylate) [P(MMA‐co‐BMA)] nanoparticles were synthesized via emulsion polymerization, and incorporated into natural rubber (NR) by latex compounding. Monodispersed, core‐shell P(MMA‐co‐BMA)/casein nanoparticles (abbreviated as PMBMA‐CA) were produced with casein (CA) as surfactant. The chemical structure of P(MMA‐co‐BMA) copolymers were confirmed by 1H‐NMR and FTIR analyses. Transmission electron microscopy demonstrated the core–shell structure of PMBMA‐CA, and PMBMA‐CA homogenously distributed around NR particles, indicating the interaction between PMBMA‐CA and NR. As a result, the tensile strength and modulus of NR/PMBMA‐CA films were significantly enhanced. The tensile strength was increased by 100% with 10% copolymer addition, when the molar ratio of MMA:BMA was 8:2. In addition, scanning electron microscopy and atomic force microscopy results presented that the NR/PMBMA‐CA films exhibited smooth surfaces with low roughness, and PMBMA‐CA was compatible with NR. FTIR‐ATR analyses also suggested fewer PMBMA‐CA nanoparticles migrated out of NR. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43843. 相似文献
5.
Mechanical and thermal properties of poly(butylene succinate)/poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) biodegradable blends 下载免费PDF全文
Biodegradable polymer blends of poly(butylene succinate) (PBS) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) were prepared with different compositions. The mechanical properties of the blends were studied through tensile testing and dynamic mechanical thermal analysis. The dependence of the elastic modulus and strength data on the blend composition was modeled on the basis of the equivalent box model. The fitting parameters indicated complete immiscibility between PBS and PHBV and a moderate adhesion level between them. The immiscibility of the parent phases was also evidenced by scanning electron observation of the prepared blends. The thermal properties of the blends were studied through differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC results showed an enhancement of the crystallization behavior of PBS after it was blended with PHBV, whereas the thermal stability of PBS was reduced in the blends, as shown by the TGA thermograms. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42815. 相似文献
6.
Polylactide (PLA), a main representative of biodegradable and made from renewable resources polymers, is surprisingly brittle at ambient temperature. In this article it is investigated how to increase its toughness by a strategy called “rubber toughening” using poly(1,4‐cis‐isoprene), a major component of natural rubber, which is immiscible with PLA, could be well dispersed in PLA matrix and is biodegradable. Immiscible blends of PLA with poly(1,4‐cis‐isoprene) were prepared by melt blending and their properties were studied and optimized. Incorporation of as low as 5 wt % of rubber increased the strain at break of compression molded film during uniaxial drawing, and also improved its tensile impact strength by 80%. The complex mechanism of plastic deformation in the blends leading to improvement of ductility and toughness was revealed. The rubbery particles initiated crazing at the early stages of deformation, as evidenced by transmission and scanning electron microscopy and also by small angle X‐ray scattering. Crazing was immediately followed by cavitation inside rubber particles, which further promoted shear yielding of PLA. The sequence of those mechanisms was proven by microscopic investigation. All three elementary mechanisms acting in the sequence indicated are responsible for surprisingly efficient toughening of PLA by a major component of natural rubber. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
7.
Biobased blends of poly(propylene carbonate) and poly(hydroxybutyrate‐co‐hydroxyvalerate): Fabrication and characterization 下载免费PDF全文
Poly(propylene carbonate) (PPC), a CO2‐based bioplastic and poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) were melt blended followed by injection molding. Fourier transform infrared spectroscopy detected an interaction between the macromolecules from the reduction in the OH peak and a shift in the C?O peak. The onset degradation temperature of the polymer blends was improved by 5% and 19% in comparison to PHBV and PPC, respectively. Blending PPC with PHBV reduced the melting and crystallization temperatures and crystallinity of the latter as observed through differential scanning calorimetry. The amorphous nature of PPC affected the thermal properties of PHBV by hindering the spherulitic growth and diluting the crystalline region. Scanning electron micrographs presented a uniform dispersion and morphology of the blends, which lead to balanced mechanical properties. Incorporating PHBV, a stiff semi‐crystalline polymer improved the dimensional stability of PPC by restricting the motion of its polymer chains. © 2016 The Authors Journal of Applied Polymer Science Published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44420. 相似文献
8.
Properties of poly(butylene adipate‐co‐terephthalate) and sunflower head residue biocomposites 下载免费PDF全文
Wangcheng Liu Tian Liu Hang Liu Junna Xin Jinwen Zhang Zayniddin Kamarovich Muhidinov Linshu Liu 《应用聚合物科学杂志》2017,134(13)
Utilization of low‐value agricultural waste for polymer composite materials has great environmental and economical benefits. Sunflower head residue (SHR) as an agricultural waste may be used as a reinforcement in polymeric materials because of its fiber characteristics. In this work, composites of biodegradable poly(butylene adipate‐co‐terephthalate) (PBAT) and SHR were prepared via melt‐extrusion compounding. To improve interfacial compatibility, maleic anhydride (MA) grafted PBAT (PBAT‐g‐MA) was prepared and used as a compatibilizer for the PBAT/SHR composites. The effects of the concentrations of SHR and PBAT‐g‐MA on the morphology, mechanical properties, melt rheology, and water resistance of the composites were examined. Interfacial adhesion between phases in the PBAT/SHR composites was enhanced by the introduction PBAT‐g‐MA as interface‐strengthening agent, resulting in improved mechanical properties and moisture resistance of the composite. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44644. 相似文献
9.
Composites of poly(3‐hydroxybutyrate)‐co‐poly(3‐hydroxyvalerate) (PHBHV) with 6% of 3‐hydroxyvalerate (HV) and natural rubber (NR) were prepared by a solvent‐casting method. Different approaches were tested for the composite preparation. Both PHBHV and NR were dissolved in chloroform, followed by its evaporation, giving various layers. The mechanical properties and morphology of the obtained composites were evaluated by tensile tests and scanning electron microscopy (SEM), respectively. The obtained results demonstrated that the final composite has excellent mechanical properties when compared with PHBHV. SEM analysis unequivocally showed the excellent adhesion between the two polymeric layers. This new material was also tested as a drug delivering system using flurbiprofen as a model drug, and then the diffusion coefficients were determined. This article describes an easy method to produce a desirable composite from PHBHV and NR. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
10.
Fabrication and improved performance of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) for packaging by addition of high molecular weight natural rubber 下载免费PDF全文
The packaging industry is searching for alternative materials to attain environmental sustainability. Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate (PHBV) is a semicrystalline polymer that meets this sustainability goal since it is bioderived and biodegradable. However, its brittle nature and relatively high water permeation and transmission rates make it unsuitable for packaging applications. In addition, PHBV has poor mechanical, thermal, and rheological properties above 160 °C, limiting its use in cast sheets and thermo‐formed packaging applications. To improve these properties, new blends of PHBV with high molecular weight natural rubber at 5, 10, 15, and 25% by weight were fabricated, and physico‐chemical properties of the blends were characterized. The rubber in the blends aided in the following: increased thermal stability since the complex viscosities of the blends were improved by one log over pure PHBV at 170 °C, created more uniform melting peaks attesting to improved homogeneity, decreased water permeation to a level similar to that of traditional thermoplastics; increased the elongation at break, and stabilized the Young's modulus. Therefore, these blends can potentially be used in‐place of traditional, petroleum‐based thermoplastics in cast sheets and thermoforms. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43937. 相似文献
11.
This article explored the possibility of using silica from fly‐ash particles as reinforcement in natural rubber/styrene–butadiene rubber (NR/SBR) vulcanizates. For a given silica content, the NR : SBR blend ratio of 1 : 1 (or 50 : 50 phr) exhibited the optimum mechanical properties for fly‐ash filled NR/SBR blend system. When using untreated silica from fly‐ash, the cure time and mechanical properties of the NR/SBR vulcanizates decreased with increasing silica content. The improvement of the mechanical properties was achieved by addition of Si69, the recommended dosage being 2.0 wt % of silica content. The optimum tensile strength of the silica filled NR/SBR vulcanizates was peaked at 10–20 phr silica contents. Most mechanical properties increased with thermal ageing. The addition of silica from fly‐ash in the NR/SBR vulcanizates was found to improve the elastic behavior, including compression set and resilience, as compared with that of commercial precipitated silica. Taking mechanical properties into account, the recommended dosage for the silica (FASi) content was 20 phr. For more effective reinforcement, the silica from fly‐ash particles had to be chemically treated with 2.0 wt % Si69. It was convincing that silica from fly‐ash particles could be used to replace commercial silica as reinforcement in NR/SBR vulcanizates for cost‐saving and environment benefits. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 相似文献
12.
Antonio C. Rodrigo Karthik Vikram Siva Shanmugan Ralph A. Whitney J. Scott Parent 《加拿大化工杂志》2018,96(1):83-90
The development of new peroxide‐curable poly(isobutylene‐co‐isoprene) (IIR) elastomers is described, wherein pendant oligomerizable C=C groups are introduced in combination with a range of serviceable functional groups. Ring‐opening of itaconic anhydride with functional alcohols or amines, followed by esterification of the resulting acids with brominated IIR, yield macromonomers that crosslink efficiently under the action of dicumyl peroxide alone. More importantly, the additional graft functionality improves the physical and chemical properties of the resulting thermosets. The introduction of fluorocarbon functionality is shown to lower surface energy and improve the material's extrusion characteristics, and trialkoxysilane functionality is used to improve filler dispersion within silica‐reinforced composites. This strategy is extended to prepare thermosets bearing polymer‐bound phenolic antioxidant. Details of macromonomer production are followed by demonstrations of their utility as engineering materials. 相似文献
13.
Study on the poly(3‐hydroxybutyrate‐co−4‐hydroxybutyrate)‐based composites toughened by synthesized polyester polyurethane elastomer 下载免费PDF全文
In this study, polycaprolactone(PCL)‐based polyurethane (PU) elastomer containing 45 wt % hard segment component was synthesized and characterized by fourier transform infrared spectroscopy, gel permeation chromatography, and X‐ray diffraction. As a toughening agent, the as‐synthesized PU was incorporated into biodegradable poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) [P(3,4)HB] by solution casting to prepare P(3,4)HB/PU composites. The microstructure and properties of P(3,4)HB/PU composites were investigated using transmission electron microscopy, X‐ray diffraction, tensile testing, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and activated sludge degradation testing. The results show that PU can disperse well in a P(3,4)HB matrix. The elongation at break of P(3,4)HB/PU composites is remarkably increased while the yield strength and elastic modulus are decreased with an increase in PU content. At the same time, it is found that the fracture characteristic of P(3,4)HB is obviously transformed from brittleness into ductility with a gradual increase in PU loading. Moreover, the thermal stability of P(3,4)HB/PU composites is significantly improved compared with that of pure P(3,4)HB. In addition, the biodegradation rate of P(3,4)HB/PU composites is evidently reduced with the increase of PU content in the activated sludge degradation testing. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42740. 相似文献
14.
Polybutadiene‐g‐poly(styrene‐co‐acrylonitrile) (PB‐g‐SAN) impact modifiers with different polybutadiene (PB)/poly(styrene‐co‐acrylonitrile) (SAN) ratios ranging from 20.5/79.5 to 82.7/17.3 were synthesized by seeded emulsion polymerization. Acrylonitrile–butadiene–styrene (ABS) blends with a constant rubber concentration of 15 wt % were prepared by the blending of these PB‐g‐SAN copolymers and SAN resin. The influence of the PB/SAN ratio in the PB‐g‐SAN impact modifier on the mechanical behavior and phase morphology of ABS blends was investigated. The mechanical tests showed that the impact strength and yield strength of the ABS blends had their maximum values as the PB/SAN ratio in the PB‐g‐SAN copolymer increased. A dynamic mechanical analysis of the ABS blends showed that the glass‐transition temperature of the rubbery phase shifted to a lower temperature, the maximum loss peak height of the rubbery phase increased and then decreased, and the storage modulus of the ABS blends increased with an increase in the PB/SAN ratio in the PB‐g‐SAN impact modifier. The morphological results of the ABS blends showed that the dispersion of rubber particle in the matrix and its internal structure were influenced by the PB/SAN ratio in the PB‐g‐SAN impact modifiers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2165–2171, 2005 相似文献
15.
The effects of dynamic vulcanization and blend ratios on mechanical properties and morphology of thermoplastic elastomeric (TPE) compositions, based on blends of nitrile rubber (NBR) and poly(styrene‐co‐acrylonitrile) (SAN), were studied. The TPE composition prepared by adding a rubber‐curatives masterbatch to softened SAN yields higher mechanical properties than that prepared by adding curatives to the softened plastic–rubber preblend. The blends having a higher rubber–plastic ratio (60 : 40 to 80 : 20) display thermoplastic elastomeric behavior, whereas those having a higher plastic–rubber ratio (50 : 50 to 90 : 10) display the behavior of impact‐resistant plastics. DSC studies revealed that NBR and SAN are thermodynamically immiscible. SEM studies of the thermoplastic elastomeric compositions show that SAN forms the matrix in which fine particles of NBR form the dispersed phase. It was further confirmed by dynamic mechanical thermal analysis. Dynamic vulcanization causes a decrease in the size of dispersed particles and improvement in mechanical properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1976–1987, 2003 相似文献
16.
The effect of several new binary accelerator systems were studied with special emphasis to the relationship of nucleophilicity to their rheological and mechanical properties. In this study, dialkyl/azacycloalkyl substituted benzoylthioureas (BTU 1‐5) were used as secondary accelerators (SA) along with three different primary accelerators (PA) viz., Cyclohexylbenzthiazylsulfonamide (CBS), Mercaptobenzothiazole (MBT) or Zincdithiocarbamate(ZDC) in the sulfur vulcanization of natural rubber. The effect of these secondary accelerators on the rheological and mechanical properties was found to be improved when compared to the reference mixes. It is noted that the N‐benzoyl‐N′N′‐piperidinylthiourea (BTU 4) is more effective as a secondary accelerator due to the higher nucleophilicity of the same when compared with the test compounds. The ZDC‐BTU gives the best result as binary accelerator system in natural rubber. Chemical characterization was carried out by determining the total crosslink density. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
17.
Blends of soy protein isolate (SPI) with 10, 20, 30, 40, and 50% poly(ethylene‐co‐ethyl acrylate‐co‐maleic anhydride) (PEEAMA), with or without addition of 2.0 wt % methylene diphenyl diisocyanate (MDI), were prepared by mixing with an intensive mixer at 150°C for 5 min, and then milling through a 1‐mm sieve. Blends were then compression‐molded into a tensile bar at 140°C. Thermal and mechanical properties and water absorption of the blends were studied by differential scanning calorimetry (DSC), dynamical mechanic analysis (DMA), a test of modulus and tensile strength (with an Instron tensile tester), a water absorption test, and scanning electron microscopy (SEM). The blends showed two composition‐dependent glass transition temperatures. Furthermore, as the SPI content increased, the melting temperature of PEEAMA remained constant but the heat of fusion decreased. These results indicate that SPI and PEEAMA were partially miscible. Morphology observations support these results. Increasing the PEEAMA content resulted in decreases in the modulus and tensile strengths and increases in the elongation and toughness of the blends. Water absorption of the blends also decreased with increased PEEAMA content. Incorporating MDI further decreased the water absorption of the blends. The mechanism of water sorption of SPI was relaxation controlled, and that of the blends was diffusion controlled. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 407–413, 2003 相似文献
18.
Natural rubber (NR) grafted with poly(vinyl propionate) (NR-g-PVP) was prepared by emulsion polymerization. The monomer content was set at 5, 10, 20, and 30 wt%. The chemical structure of NR-g-PVP was confirmed by 1H-NMR and FTIR techniques. The grafting parameters of purified NR-g-PVP were evaluated. Binary (PLA/NR and PLA/NR-g-PVP) and ternary (PLA/NR/NR-g-PVP) blends were prepared by melt blending using a twin-screw extruder. The percentage of grafted PVP on NR affected morphology, thermal and mechanical properties of the blends. In binary blends, 5% grafting showed the greatest improvement of toughness and ductility with PLA, whereas there was no improvement in the mechanical properties of PLA/NR blend from using NR-g-PVP as a compatibilizer. The mechanical properties of the blends are related to mutual compatibility of the components. Good interfacial adhesion and proper particle size of NR were the key factors contributing to mechanical properties. 相似文献
19.
Polyhydroxyalkanoates are a class of biodegradable polymers that may be used more as environmentally friendly materials if their mechanical properties can be improved. We approached this goal by modifying poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) with a well‐established processing technique involving crosslinking the polymer chains and then drying a swollen gel of the network under uniaxial strain. The mechanical properties of the resulting oriented films were determined in continuous extension as a function of the degree of crosslinking and the extent of strain during the drying process. Crosslinking invariably improved the toughness. Similarly, the subsequent orientation of the process generally increased the toughness as well, but in some cases, a reduction in the extensibility offset the increase in the ultimate stress at break and yielded reduced values of the toughness. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1519–1523, 2005 相似文献
20.
Corn zein and wheat gliadin protein are compounded into synthetic cis-1,4-polyisoprene rubber (IR) and sulfur-cured in a zinc oxide (ZnO)-free system. The curing kinetics and mechanical and morphological properties are compared to a ZnO-activated or carbon black (CB)-reinforced cure system. The proteins provide reversion resistance and reinforcement to IR at filler loadings as low as 1 part per hundred rubber (phr). The zein-IR composites exhibit higher moduli, better filler–matrix adhesion, and less filler agglomeration/migration than gliadin-IR because zein is more chemically compatible with IR. The gliadin-IR composites have a lower percent set and hysteresis, indicating the formation of an elastic restoring gliadin network. Optimal properties are achieved at 2-phr gliadin and 4-phr zein. At gliadin loading >2 phr and zein loading >4 phr, the protein domain size increases and mechanical properties deteriorate. At equal filler loading, property improvements over CB-IR are observed for one or both proteins. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48141. 相似文献