首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polymer blended materials such as polyamide 6 (PA6)/polypropylene (PP) blends have received considerable attention in recent years. To improve the compatibility of PA6 and PP, compatibilizers like maleic anhydride‐g‐polypropylene (MPP) are often added. In addition, organically modified montmorillonite (MMT) is also used to improve the properties of various materials. In this work, the crystallization behavior of PP/PA6/MMT nanocomposites with MPP compatibilizer was investigated systematically. The annealing process effectively improved the crystallization of α‐PP. The crystallization temperature (Tc) of PA6 was increased by ca 2–3 °C on introducing MPP or MMT alone to the PP/PA6 system, whereas Tc of PP underwent no obvious change. However, when MPP and MMT were added simultaneously, Tc of PP and PA6 increased by 6.6 and 4.2 °C, respectively, and a new crystallization peak corresponding to PP‐g‐PA6 copolymer phase was observed at 162.5 °C. The combined effect of MPP and MMT led to better compatibility of PP with PA6. Moreover, the results of a non‐isothermal crystallization kinetics experiment revealed that the simultaneous introduction of MPP and MMT markedly shortened the crystallization time. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
Fractionated crystallization behavior of dispersed PA6 phase in PP/PA6 blends compatibilized with PP‐g‐MAH was investigated by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), polarized light microscopy (PLM), and wide‐angle X‐ray diffraction (WAXD) in this work. The lack of usual active heterogeneities in the dispersed droplet was the key factor for the fractionated crystallization of PA6. The crystals formed with less efficient nuclei might contain more defects in the crystal structures than those crystallized with the usual active nuclei. The lower the crystallization temperature, the lesser the perfection of the crystals and the lower crystallinity would be. The fractionated crystallization of PP droplets encapsulated by PA6 domains was also observed. The effect of existing PP‐g‐MAH‐g‐PA6 copolymer located at the interface on the fractionated crystallization could not be detected in this work. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3742–3755, 2004  相似文献   

3.
Polypropylene/polypropylene‐grafted‐maleic anhydride/glass fiber reinforced polyamide 66 (PP/PP‐g‐MAH/GFR PA 66) blends‐composites with and without the addition of polypropylene‐grafted‐maleic anhydride (PP‐g‐MAH) were prepared in a twin screw extruder. The effect of the compatibilizer on the thermal properties and crystallization behavior was determined using differential scanning calorimetry analysis. The hold time was set to be equal to 5 min at 290°C. These conditions are necessary to eliminate the thermomechanical history in the molten state. The crystallization under nonisothermal conditions and the plot of Continuous‐Cooling‐Transformation of relative crystallinity diagrams of both PP and PA 66 components proves that PP is significantly affected by the presence of PP‐g‐MAH. From the results it is found that an abrupt change is observed at 2.5 wt % of PP‐g‐MAH as a compatibilizer and then levels off. In these blends, concurrent crystallization behavior was not observed for GFR PA66. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1620–1626, 2007  相似文献   

4.
A series of blends of polypropylene (PP)–polyamide‐6 (PA6) with either reactive polyethylene–octene elastomer (POE) grafted with maleic anhydride (POE‐g‐MA) or with maleated PP (PP‐g‐MA) as compatibilizers were prepared. The microstructures and mechanical properties of the blends were investigated by means of tensile and impact testing and by scanning electron microscopy and transmission electron microscopy. The results indicated that the miscibility of PP–PA6 blends was improved with the addition of POE‐g‐MA and PP‐g‐MA. For the PP/PA6/POE‐g‐MA system, an elastic interfacial POE layer was formed around PA6 particles and the dispersed POE phases were also observed in the PP matrix. Its Izod impact strength was four times that of pure PP matrix, whilst the tensile strength and Young's modulus were almost unchanged. The greatest tensile strength was obtained for PP/PA6/PP‐g‐MA blend, but its Izod impact strength was reduced in comparison with the pure PP matrix. © 2002 Society of Chemical Industry  相似文献   

5.
A highly novel nano‐CaCO3 supported β‐nucleating agent was employed to prepare β‐nucleated isotactic polypropylene (iPP) blend with polyamide (PA) 66, β‐nucleated iPP/PA66 blend, as well as its compatibilized version with maleic anhydride grafted PP (PP‐g‐MA), maleic anhydride grafted polyethylene‐octene (POE‐g‐MA), and polyethylene‐vinyl acetate (EVA‐g‐MA), respectively. Nonisothermal crystallization behavior and melting characteristics of β‐nucleated iPP and its blends were investigated by differential scanning calorimeter and wide angle X‐ray diffraction. Experimental results indicated that the crystallization temperature (T) of PP shifts to high temperature in the non‐nucleated PP/PA66 blends because of the α‐nucleating effect of PA66. T of PP and the β‐crystal content (Kβ) in β‐nucleated iPP/PA66 blends not only depended on the PA66 content, but also on the compatibilizer type. Addition of PP‐g‐MA and POE‐g‐MA into β‐nucleated iPP/PA66 blends increased the β‐crystal content; however, EVA‐g‐MA is not benefit for the formation of β‐crystal in the compatibilized β‐nucleated iPP/PA66 blend. It can be relative to the different interfacial interactions between PP and compatibilizers. The nonisothermal crystallization kinetics of PP in the blends was evaluated by Mo's method. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Titanium dioxide (TiO2) nanoparticles were functionalized with toluene‐2,4‐diisocyanate and then polypropylene/polyamide 6/(PP/PA6) blends containing functionalized‐TiO2 were prepared using a twin screw extruder. Isothermal crystallization and melting behavior of the as‐prepared composites were investigated using differential scanning calorimetry and wide‐angle X‐ray diffraction. Isothermal crystallization analysis shows that the TiO2 nanoparticles have two effects on PP/PA6 blends, i.e., it can favor the improvement of crystallization ability and decrease the crystallization rate of PP/PA6 blends. The improvement of crystallization ability is superior over decreasement of crystallization rate of PA6 chains caused by TiO2, therefore PA6 in PP/PA6/TiO2 nanocomposites have higher crystallization rate than that of PA6 in pure PP/PA6 blends, which indicated TiO2 nanoparticles favored the crystallization of PA6. The TiO2 nanoparticles show no effects on the equilibrium melting temperature (T) values of PP phase but decreases the T values of PA6 phase. In addition, the TiO2 nanoparticles did not change the crystalline polymorph of PP/PA6 blends basically; however, favored the formation of β‐PP. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

7.
The compatibilization of polypropylene (PP)/nylon 6 (PA6) blends with a new PP solid‐phase graft copolymer (gPP) was systematically studied. gPP improved the compatibility of PP/PA6 blends efficiently. Because of the reaction between the reactive groups of gPP and the NH2 end groups of PA6, a PP‐g‐PA6 copolymer was formed as a compatibilizer in the vicinity of the interfaces during the melting extrusion of gPP and PA6. The tensile strength and impact strength of the compatibilized PP/PA6 blends obviously increased in comparison with those of the PP/PA6 mechanical blends, and the amount of gPP and the content of the third monomer during the preparation of gPP affected the mechanical properties of the compatibilized blends. Scanning electron microscopy and transmission electron microscopy indicated that the particle sizes of the dispersed phases of the compatibilized PP/PA6 blends became smaller and that the interfaces became more indistinct in comparison with the mechanical blends. The microcrystal size of PA6 and the crystallinity of the two components of the PP/PA6 blends decreased after compatibilization with gPP. The compatibilized PP/PA6 blends possessed higher pseudoplasticity, melt viscosity, and flow activation energy. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 420–427, 2004  相似文献   

8.
In this article, maleated–grafted ethylene‐co‐vinyl acetate (EVA‐g‐MA) was used as the interfacial modifier for polypropylene/polyamide‐6 (PP/PA6) blends, and effects of its concentration on the mechanical properties and the morphology of blends were investigated. It was found that the addition of EVA‐g‐MA improved the compatibility between PP and PA6 and resulted in a finer dispersion of dispersed PA6 phase. In comparison with uncompatibilized PP/PA6 blend, a significant reduction in the size of dispersed PA6 domain was observed. Toluene‐etched micrographs confirmed the formation of interfacial copolymers. Mechanical measurement revealed that the addition of EVA‐g‐MA markedly improved the impact toughness of PP/PA6 blend. Fractograph micrographs revealed that matrix shear yielding began to occur when EVA‐g‐MA concentration was increased upto 18 wt %. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99:3300–3307, 2006  相似文献   

9.
The compatibilization of syndiotactic polystyrene (sPS)/polyamide 6 (PA‐6) blends with maleic anhydride grafted syndiotactic polystyrene (sPS‐g‐MA) as a reactive compatibilizer was investigated. The sPS/PA‐6 blends were in situ compatibilized by a reaction between the maleic anhydride (MA) of sPS‐g‐MA and the amine end group of PA‐6. The occurrence of the chemical reaction was substantiated by the disappearance of a characteristic MA peak from the Fourier transform infrared spectrum. Morphology observations showed that the size of the dispersed PA‐6 domains was significantly reduced and that the interfacial adhesion was much improved by the addition of sPS‐g‐MA. As a result of reactive compatibilization, the impact strengths of the sPS/PA‐6 blends increased with an increase in the sPS‐g‐MA content. The crystallization behaviors of the blends were affected by the compatibilization effect of sPS‐g‐MA. A single melting peak of sPS in the noncompatibilized blend was gradually split into two peaks as the amount of the compatibilizer increased. A single crystallization peak of PA‐6 in the noncompatibilized blend became two peaks with the addition of 3 wt % sPS‐g‐MA. The new peak was a result of the fractionation crystallization. As the amount of sPS‐g‐MA increased, the intensity of the new peak increased, and the original peak nearly disappeared. Finally, the crystallization peak of PA‐6 disappeared with 20 wt % sPS‐g‐MA in the blend. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2502–2506, 2003  相似文献   

10.
This research analyzes the effect of ground tire rubber (GTR) and a novel metallocene‐based ethylene–propylene copolymer (EPR), with high propylene content, on the morphology and mechanical behavior of ternary polymer blends based on a highly flowable polypropylene homopolymer (PP). The PP/EPR blends morphology, with very small domains of EPR dispersed in the PP matrix, indicates a good compatibility among these materials, which leads to a significant improvement on elongation at break and impact strength. The incorporation of EPR on the rubber phase of thermoplastic elastomeric blends (TPE) based on GTR and PP (TPEGTR) has a positive effect on their mechanical performance, attributed to the toughness enhancement of the PP matrix and to the establishment of shell‐core morphology between the rubber phases. The mechanical properties of the ternary blends reveal that TPEGTR blends allow the upcycling of this GTR material by injection molding technologies. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42011.  相似文献   

11.
The thermal behavior and morphology of multicomponent blends based on PA6, polyamide 6 (PA6)/styrene–acrylonitirle copolymer (SAN), PA6/acrylonitrile–butadiene–styrene terpolymer (ABS), and their compatibilized blends with styrene–acrylonitrile–maleic anhydride copolymer (SANMA) were studied using DSC and SEM. The blends were prepared in a twin‐screw extruder under similar processing conditions, keeping the PA6 content fixed at 50 wt %. It was found that, in all the blends, the second component had a nucleating effect and improved the overall degree and rate of crystallization of PA6, whereas addition of a compatibilizer slightly diminished these effects and resulted in significant changes in the blend morphology. The nucleating effect and consequent changes in the crystallization behavior was attributed to the presence of SAN, which is a common component in all the blends. The Tg of PA6 in the blends with a cocontinuous morphology, due to the connectivity between the phases, is higher than in the blends with a disperse‐type morphology. The compatibilized blends have a lower crystallization rate and nucleation ability with a cocontinuous morphology, whereas the uncompatibilized blends have a higher crystallization rate with a higher nucleation ability and a disperse and/or a coarse cocontinuous morphology. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2753–2759, 2002  相似文献   

12.
The dynamic vulcanization process, usually used for the preparation of thermoplastic elastomers, was used to prepare polypropylene (PP)/epoxy blends. The blends had crosslinked epoxy resin particles finely dispersed in the PP matrix, and they were called dynamically cured PP/epoxy blends. Maleic anhydride grafted polypropylene (MAH‐g‐PP) was used as a compatibilizer. The effects of the reactive compatibilization and dynamic cure were studied with rheometry, capillary rheometry, and scanning electron microscopy (SEM). The crystallization behavior and mechanical properties of PP/epoxy, PP/MAH‐g‐PP/epoxy, and dynamically cured PP/epoxy blends were also investigated. The increase in the torque at equilibrium for the PP/MAH‐g‐PP/epoxy blends indicated the reaction between maleic anhydride groups of MAH‐g‐PP and the epoxy resin. The torque at equilibrium of the dynamically cured PP/epoxy blends increased with increasing epoxy resin content. Capillary rheological measurements also showed that the addition of MAH‐g‐PP or an increasing epoxy resin content increased the viscosity of PP/epoxy blends. SEM micrographs indicated that the PP/epoxy blends compatibilized with PP/MAH‐g‐PP had finer domains and more obscure boundaries than the PP/epoxy blends. A shift of the crystallization peak to a higher temperature for all the PP/epoxy blends indicated that uncured and cured epoxy resin particles in the blends could act as effective nucleating agents. The spherulites of pure PP were larger than those of PP in the PP/epoxy, PP/MAH‐g‐PP/epoxy, and dynamically cured PP/epoxy blends, as measured by polarized optical microscopy. The dynamically cured PP/epoxy blends had better mechanical properties than the PP/epoxy and PP/MAH‐g‐PP/epoxy blends. With increasing epoxy resin content, the flexural modulus of all the blends increased significantly, and the impact strength and tensile strength increased slightly, whereas the elongation at break decreased dramatically. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1437–1448, 2004  相似文献   

13.
Blends of isotactic polypropylene (PP) and syndiotactic polystyrene (sPS) with and without β‐nucleating agent were prepared using a twin‐screw extruder at 290 °C. Blends of PP/sPS with β‐nucleating agent mainly show β crystalline form, irrespective of high (20 °C min?1) or low (2 °C min?1) previous cooling rates. This suggests that the cooling rates have little effect on the polymorphic composition of PP in PP/sPS blends. The effect of sPS on the crystallization of PP is compared with that of polyamide 6 (PA6). The increase in crystallization temperature of PP is smaller in the presence of sPS than in the presence of PA6; the fold surface free energy of PP/sPS is larger than that of PP/PA6 blends. These results reveal that compared with PA6, sPS has much weaker α‐nucleation effect on the crystallization of PP. The weak α‐nucleation effect of sPS is attributed to the high lattice mismatch between PP and sPS crystals.  相似文献   

14.
Cocontinuous blends of 45/55 polypropylene (PP)/acrylonitrile‐butadiene‐styrene (ABS) with multiwall carbon nanotubes (MWNT) were prepared by melt‐mixing in a conical twin‐screw microcompounder. PP‐grafted‐maleic anhydride (PP‐g‐MA) and styrene MA were used as compatibilizers for PP/ABS blends. Scanning electron microscopic observations showed phase segregation of PP‐g‐MA in the blends. State of dispersion of MWNT in the presence or absence of the compatibilizers was assessed through AC electrical conductivity measurements and crystallization studies of the blends. An improvement in AC electrical conductivity was observed in blends in presence of either styrene MA or dual compatibilizers. The lowest electrical percolation threshold was achieved at 0.1 wt % of MWNT using sodium salt of 6‐amino hexanoic acid‐modified MWNT. Significant increase in crystallization temperature of PP phase of blends with MWNT was observed in the presence of compatibilizers as compared to blends without compatibilizers. An attempt has been made to address the complex issues of phase segregation, compatibilization, and dispersion of MWNT in cocontinuous blends of PP/ABS. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
The crystallization behaviors, dynamic mechanical properties, tensile, and morphology features of polyamide1010 (PA1010) blends with the high‐impact polystyrene (HIPS) were examined at a wide composition range. Both unmodified and maleic‐anhydride‐(MA)‐grafted HIPS (HIPS‐g‐MA) were used. It was found that the domain size of HIPS‐g‐MA was much smaller than that of HIPS at the same compositions in the blends. The mechanical performances of PA1010–HIPS‐g‐MA blends were enhanced much more than that of PA1010–HIPS blends. The crystallization temperature of PA1010 shifted towards higher temperature as HIPS‐g‐MA increased from 20 to 50% in the blends. For the blends with a dispersed PA phase (≤35 wt %), the Tc of PA1010 shifted towards lower temperature, from 178 to 83°C. An additional transition was detected at a temperature located between the Tg's of PA1010 and PS. It was associated with the interphase relaxation peak. Its intensity increased with increasing content of PA1010, and the maximum occurred at the composition of PA1010–HIPS‐g‐MA 80/20. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 857–865, 1999  相似文献   

16.
Nano‐CaCO3/polypropylene (PP) composites modified with polypropylene grafted with acrylic acid (PP‐g‐AA) or acrylic acid with and without dicumyl peroxide (DCP) were prepared by a twin‐screw extruder. The crystallization and melting behavior of PP in the composites were investigated by DSC. The experimental results showed that the crystallization temperature of PP in the composites increased with increasing nano‐CaCO3 content. Addition of PP‐g‐AA further increased the crystallization temperatures of PP in the composites. It is suggested that PP‐g‐AA could improve the nucleation effect of nano‐CaCO3. However, the improvement in the nucleation effect of nano‐CaCO3 would be saturated when the PP‐g‐AA content of 5 phf (parts per hundred based on weight of filler) was used. The increase in the crystallization temperature of PP was observed by adding AA into the composites and the crystallization temperature of the composites increased with increasing AA content. It is suggested that the AA reacted with nano‐CaCO3 and the formation of Ca(AA)2 promoted the nucleation of PP. In the presence of DCP, the increment of the AA content had no significant influence on the crystallization temperature of PP in the composites. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2443–2453, 2004  相似文献   

17.
The nonisothermal crystallization kinetics of polypropylene (PP), PP/polystyrene (PS), and PP/PP‐g‐PS/PS blends were investigated with differential scanning calorimetry at different cooling rates. The Jeziorny modified Avrami equation, Ozawa method, and Mo method were used to describe the crystallization kinetics for all of the samples. The kinetics parameters, including the half‐time of crystallization, the peak crystallization temperature, the Avrami exponent, the kinetic crystallization rate constant, the crystallization activation energy, and the F(T) and a parameters were determined. All of the results clearly indicate that the PP‐g‐PS copolymer accelerated the crystallization rate of the PP component in the PP/PP‐g‐PS/PS blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
In this article, polyamide 6 (PA6), maleic anhydride grafted ethylene‐propylene‐diene monomer (EPDM‐g‐MA), high‐density polyethylene (HDPE) were simultaneously added into an internal mixer to melt‐mixing for different periods. The relationship between morphology and rheological behaviors, crystallization, mechanical properties of PA6/EPDM‐g‐MA/HDPE blends were studied. The phase morphology observation revealed that PA6/EPDM‐g‐MA/HDPE (70/15/15 wt %) blend is constituted from PA6 matrix in which is dispersed core‐shell droplets of HDPE core encapsulated by EPDM‐g‐MA phase and indicated that the mixing time played a crucial role on the evolution of the core‐shell morphology. Rheological measurement manifested that the complex viscosity and storage modulus of ternary blends were notable higher than the pure polymer blends and binary blends which ascribed different phase morphology. Moreover, the maximum notched impact strength of PA6/EPDM‐g‐MA/HDPE blend was 80.7 KJ/m2 and this value was 10–11 times higher than that of pure PA6. Particularly, differential scanning calorimetry results indicated that the bulk crystallization temperature of HDPE (114.6°C) was partly weakened and a new crystallization peak appeared at a lower temperature of around 102.2°C as a result of co‐crystal of HDPE and EPDM‐g‐MA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Ternary polymer blends of 80/10/10 (wt/wt/wt) polyamide6 (PA6)/polypropylene (PP)/acrylonitrile‐butadiene‐styrene (ABS), PP/PA6/ABS, and ABS/PP/PA6 were prepared in the presence of multiwalled carbon nanotubes (MWCNTs) by melt‐mixing technique to investigate the influence of MWCNTs on the phase morphology, electrical conductivity, and the crystallization behavior of the PP and PA6 phases in the respective blends. Morphological analysis showed the “core–shell”‐type morphology in 80/10/10 PA6/PP/ABS and 80/10/10 PP/PA6/ABS blends, which was found to be unaltered in the presence of MWCNTs. However, MWCNTs exhibited “compatibilization‐like” action, which was manifested in a reduction of average droplet size of the dispersed phase/s. In contrast, a separately dispersed morphology has been found in the case of 80/10/10 ABS/PP/PA6 blends in which both the phases (PP and PA6) were dispersed separately in the ABS matrix. The electrical percolation threshold for 80/10/10 PA6/PP/ABS and 80/10/10 PP/PA6/ABS ternary polymer blends was found between 3–4 and 2–3 wt% of MWCNTs, respectively, whereas 80/10/10 ABS/PP/PA6 blends showed electrically insulating behavior even at 5 wt% of MWCNTs. Nonisothermal crystallization studies could detect the presence of MWCNTs in the PA6 and the PP phases. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

20.
Polypropylene (PP) was functionalized with acrylic acid (AA) and styrene (st) as a comonomer by means of a radical‐initiated melt‐grafting reaction. FTIR, ESCA, and 1H‐NMR spectroscopies were used to characterize the formation of polypropylene grafted with acrylic acid (PP‐g‐AA) and polypropylene grafted with acrylic acid and styrene (PP‐g‐AAst). The content of AA grafted onto PP was determined by using volumetric titration. Blends of PP with 0–100 wt % of PP‐g‐AA were prepared by melt mixing. The effect of the modified polymer content on the surfaces of cast films was characterized through FTIR–ATR and ESCA analysis as well as contact‐angle, wetting‐tension, and ink‐adhesion measurements. The influence of the content of AA on the melting and crystallization temperature of PP was investigated by DSC. The contact angles of water on cast‐film surfaces of PP/PP‐g‐AA blends decreases with increasing modified polymer content and decreasing PP‐g‐AA molecular weight. A notorious improvement on wetting tension was observed with increasing modified polymer content and decreasing PP‐g‐AA molecular weight. From FTIR–ATR and ESCA spectra of the blends, a calculation was made of the carbonyl index on the films' surfaces. It was found that the higher the carbonyl index, the lower the contact‐angle value for the polypropylene blends. An increase in crystallization temperature of PP was observed when AA monomers were grafted into PP and with increasing PP‐g‐AA content in the blend, probably caused by a nucleation effect of AA monomers that would improve the crystallization capability of PP. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1497–1505, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号