首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The water absorption characteristics of pineapple leaf fiber (PALF)/glass fiber (GF) hybrid polyester(PER) composites, and chemically modified PALF/polyester composites were evaluated by immersion in distilled water at 28, 60, and 90°C. The diffusion properties of the intimately mixed (IM) and the layered hybrid composite GPG (Glass skin and PALF core) of different PALF/GF ratio at the three temperatures were compared in order to identify the environmental ageing mechanism at different temperatures. The effect of temperature on the kinetics and thermodynamics of diffusion were also examined. The water uptake of both IM and GPG hybrid composites was decreased with increase in glass fiber content; the lowest water uptake was observed for 0.46 Vf GF hybrid composite. Among the chemically modified composites, vinyl tri 2‐methoxy ethoxy silane treated composites showed the lowest water uptake. Finally, parameters like diffusion, sorption, and permeability coefficients were determined. It was observed that equilibrium water uptake is dependent on the nature of the composite and temperature. Experimental results were also compared with theoretical predictions. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

2.
This experimental study evaluated the water absorption characteristics of pineapple leaf fiber (PALF)–polyester composites of different fiber content. The degree of water absorption was found to increase with fiber loading. The mechanism of diffusion was analyzed and the effect of fiber loading on the sorption kinetics was studied. The diffusion coefficient was calculated and found to increase with fiber content. Studies were also made to correlate water absorption with the cross‐sectional areas of the specimens. The effects of ageing on the tensile properties and dimensional stability of PALF polyester composites were studied under two different ageing conditions. Ageing studies showed a decrease in tensile strength of the composites. The composite specimens subjected to thermal ageing showed only a slight deterioration in strength. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 503–510, 2004  相似文献   

3.
Textile biocomposites were prepared by reinforcing natural rubber with woven sisal fabric. Sisal fabric was subjected to various chemical modifications like mercerization, silanization, and thermal treatment. The moisture uptake of the textile composites was found to depend upon fiber content as well as architecture. The mechanism of diffusion in the composites was found to be fickian in nature. The effect of chemical modification of sisal fabric on moisture uptake was also analyzed. Mercerization was seen to increase the water uptake in the composites while thermally treated fabric reinforced composites exhibited lower water uptake. The influence of temperature on water sorption of the biocomposites is also analyzed. The thermodynamic parameters of the sorption process were also evaluated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 416–423, 2006  相似文献   

4.
The diffusion of water and artificial seawater through cross‐linked coir fiber reinforced natural rubber composites was analyzed. The effect of fiber loading, chemical treatment, and bonding agent on liquid sorption was investigated. Based on the experiments, it is suggested that the probable mechanism of transport in gum compound is Fickian and that in composites is anomalous. The liquid uptake of all the composites is higher in water than that in artificial seawater. The composites showed increased swelling with fiber loading in water and artificial seawater. The influence of silica in the bonding system on swelling of the composites was also analyzed. In the case of gum compound, the desorption process is also Fickian, similar to the absorption of water and seawater. But the desorption of composites exhibited deviation from Fickian behavior. The effect of chemical treatment of coir fibers on the swelling was analyzed and found that the uptake of water and artificial seawater is reduced further in composites containing treated fibers. POLYM. COMPOS., 26:136–143, 2005. © 2005 Society of Plastics Engineers  相似文献   

5.
This article is focused to elucidate the critical influence of diffusion temperature on the water uptake and subsequent degradation behavior of multi‐walled carbon nanotube embedded glass fiber/epoxy (MWCNT‐GE) composite. Presence of MWCNT in the glass fiber/epoxy (GE) composite significantly suppressed its water absorption propensity at lower aging temperature (25 °C). However, MWCNT reinforcement in GE composite adversely affected its high temperature water resistance due to generation of unfavorable thermal and hygroscopic stresses at the MWCNT/polymer interfaces. Effect of MWCNT and water diffusion temperature on the glass transition temperature and chemical bonding characteristics of GE composite have been verified by differential scanning calorimetry and Fourier transformed infrared spectroscopy. Flexural testing of the water saturated samples revealed that diffused water exerts more detrimental effect on mechanical performance of MWCNT‐GE composite than that of control GE composite. The extent of recovery in mechanical performance of the composites has also been evaluated after complete desorption of the water saturated samples. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45987.  相似文献   

6.
Injection molded glass–fiber reinforced polyamide 66 composites and unreinforced polymer samples have been characterized during conditioning up to 900 h in water, ethylene glycol, and water–glycol mixture at 50 and 70°C. All materials showed significant fluid and temperature‐dependent weight and volume increase. Glass reinforcement significantly reduced the polymer fluid uptake. The absorption of the antifreeze mixture initially follows a simple rule of mixtures of the absorption of the two individual components. However, after absorption of ∼5% a significantly higher than predicted level of antifreeze absorption was observed. This coincided with a significant increase in the volumetric swelling coefficient. Dynamic mechanical analysis and unnotched impact testing indicated significant changes in composite mechanical performance dependent on conditioning fluid and temperature. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

7.
Hybridization of Banana fibers with glass fibers has been found to reduce the water absorption behavior of the composites in an earlier work by us. Banana fibers were hybridized with glass and different layering patterns were followed in the preparation of the composites. The effect of the various layering patterns on the water absorption of the composites was studied. It was found that water diffusion occurs in the composite depending on the layering pattern as well as the temperature. In all the experiments, it has been found that composites with an intimate mixture of glass and banana show the maximum water uptake except for temperature of 90°C. At 90°C the maximum water uptake is found to be for composites where there is one layer of banana and another layer of glass. The water uptake follows the same trend as that in all other temperatures till a time span of 4900 min is reached. The kinetics of diffusion was found to be Fickian in nature. The various thermodynamic parameters like sorption coefficient, diffusion coefficient. Enthalpy change, entropy change, and activation energy of the various composites were calculated. From all the calculations it has been concluded that layering pattern is an important parameter which controls the water absorption of the composites. The layering pattern Cg‐b‐g was found to have the lowest water uptake. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
The conventional gravimetric method and positron lifetime spectroscopy have been used to investigate the effect of glass fiber orientation on the diffusion behavior of seawater in epoxy-based composite samples with glass fiber orientations of 0 and 45°. The equilibrium mass uptake of seawater in 45 and 0° orientation composites has been found to be 2.77 and 1.57%, respectively. The diffusion process is non-Fickian in a 45° fiber oriented composite, whereas it is Fickian in a 0° oriented composite. Free-volume data for 45° fiber oriented composites indicates swelling upon the sorption of seawater leading to structural relaxation, and hence the diffusion becomes non-Fickian. On the other hand, a 0° fiber orientation sample exhibits no swelling, and this suggests that water diffusion to the fiber–resin interface through the resin matrix is impeded by the large number of bonds. A polymer–fiber interaction parameter determined from these results also further supports the idea that interface interaction in a 45° fiber oriented composite is less than that in a 0° fiber oriented composite. Positron and gravimetric results support this argument. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
The durability of entirely bio‐based composites with respect to the exposure to elevated humidity was evaluated. Different combinations of bio‐based resins (Tribest, EpoBioX, Envirez) and cellulosic fibers (flax and regenerated cellulose fiber rovings and fabrics) were used to manufacture unidirectional and cross‐ply composite laminates. Water absorption experiments were performed at various humidity levels (41%, 70%, and 98%) to measure apparent diffusion coefficient and moisture content at saturation. Effect of chemical treatment (alkali and silane) of fibers as protection against moisture was also studied. However, fiber treatment did not show any significant improvement and in some cases the performance of the composites with treated fibers was lower than those with untreated reinforcement. The comparison of results for neat resins and composites showed that moisture uptake in the studied composites is primarily due to cellulosic reinforcement. Tensile properties of composites as received (RH = 24%) and conditioned (RH = 41%, 70%, and 98%) were measured in order to estimate the influence of humidity on behavior of these materials. Results were compared with data for glass fiber reinforced composite, as a reference material. Previous results from study of unreinforced polymers showed that resins were resistant to moisture uptake. Knowing that moisture sorption is primarily dominated by natural fibers, the results showed that some of the composites with bio‐based resins performed very well and have comparable properties with composites of synthetic epoxy, even at elevated humidity. POLYM. COMPOS., 36:1510–1519, 2015. © 2014 Society of Plastics Engineers  相似文献   

10.
Composites of different lignocellulosic materials and high‐density polyethylene were prepared and their long‐term water absorption behaviors were studied. Wood flour, rice hulls, newsprint fibers, and kenaf fibers were mixed with the polymer at 25 and 50 wt % fiber contents and 1 and 2% compatibilizer, respectively. Water absorption tests were carried out on injection‐molded specimens at room temperature for five weeks. Results indicated a significant difference among different natural fibers with kenaf fibers and newsprint fibers exhibiting the highest and wood flour and rice hulls the lowest water absorption values, respectively. Very little difference was observed between kenaf fiber and newsprint composites and between rice hulls and wood flour composites regarding their water uptake behavior. The difference between 25 and 50% fiber contents for all composite formulations increased at longer immersion times, especially for the composites with higher water absorption. Kenaf fiber composites containing 50% kenaf fibers exhibited the highest water diffusion coefficient. A strong correlation was found between the water absorption and holocellulose content of the composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3907–3911, 2006  相似文献   

11.
Epoxy and polyester resins have been reinforced with methacrylamide (MAA) treated bamboo strip matting to develop bamboo fiber reinforced plastic composites. Bamboo mats were graft copolymerized with 1, 3, and 5% solution of MAA. The mechanical (tensile strength, elastic modulus, flexural strength, and flexural modulus), thermal, and water absorption properties of the composites were determined. One percent treatment of bamboo with MAA gave optimum results with epoxy resin. The mechanical properties were improved. TGA results reveal that the degradation temperature of the composite has improved after grafting. The weight loss of 1% MAA treated bamboo–epoxy composite reached a value of 95.132% at 795°C compared to 97.655% at 685°C of untreated bamboo–epoxy composite. Water absorption in the composites was studied by long term immersion and 2 h boiling in distilled water. The process of water absorption indicates Fickian mode of diffusion. MAA treatment results in reduced water uptake. There was improvement in the properties of pretreated bamboo‐polyester matrix composite as well. Three percent treatment of bamboo with MAA gave optimum results with polyester resin. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
An experimental investigation was carried out to study the effect of different surface treatments on the moisture absorption behavior of glass fabric/polyester composites. The materials under study included composites containing clean glass fabrics, fabrics treated with a silane coupling agent, and fabrics coated with a poly(dimethylsiloxane) elastomer. Weight gain data versus time of immersion were collected at three immersion temperatures and water uptake at equilibrium as well as apparent diffusion coefficients were calculated. The interlaminar shear strength was also measured at the initial dry state and at different stages of the absorption process to estimate the interfacial contribution to sorption behavior. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 843–851, 2005  相似文献   

13.
The effect of chemical modification of both fiber and matrix on melt rheological behavior of intimately mixed short sisal–glass hybrid fiber‐reinforced low‐density polyethylene composites was studied with an Instron capillary rheometer. The variations of melt viscosity with different shear rate and shear stress values for different temperatures were studied. A temperature range of 130 to 150°C and shear rates of 16.4 to 5468 s?1 were chosen for the analysis. Chemical modifications with stearic acid, maleic anhydride, silane, and peroxides were tested for their ability to improve the interaction between the matrix and fiber. The viscosity of the hybrid composites increases with every chemical modification. In the case of peroxide‐treated composites, the increase can be attributed to the peroxide‐induced grafting of the polyethylene matrix to the fiber surface and to the crosslinking of the polyethylene matrix. These phenomena are both activated by temperature, whereas temperature causes a reverse effect for all other chemical modifications. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 443–450, 2003  相似文献   

14.
Cellulose micro fiber reinforced natural rubber composites were prepared and the diffusion and transport of aromatic solvents through these composites were studied in the temperature range 30–70°C. The diffusion parameters were investigated with special reference to the effect of fiber loading, penetrant size, temperature and interphase adhesion. The effect of chemical treatments on solvent uptake was also analyzed. The transport coefficients such as diffusion, permeation and sorption coefficients were determined to evaluate the influence of interphase adhesion on transport properties. The van't Hoff relationship was used to determine the thermodynamic parameters. The first order kinetic rate constant was evaluated. Finally, experimental results of the sorption properties of the composites were compared with theoretical predictions.  相似文献   

15.
A model previously formulated or water sorption in polyester resin‐glass fiber composites has been applied to the kinetic analysis of experimental data for two composites containing a hydrolysable (polyvinyl acetate‐PVAc) and a non‐hydrolyzable (polystyrene‐PS) shrinkage‐controlling low‐profile additive (LPA) respectively. It was found that the equilibrium water uptake in the composites and their unreinforced matrix is not drastically affected by the type of LPA. The kinetics of water sorption in the composites, however, were substantially different. The PVAc composite displayed a two‐stage sorption process, the first stage being attributed to diffusion combined with hydrolysis, and the second to matrix swelling and plasticizing. A maximum in the kinetic curve was observed, and was due to changes in water solubility inside the matrix during sorption. In contrast, the PS composite displayed the typical kinetics of materials with slowly increasing hydrophilicity.  相似文献   

16.
We explored the environmental aging behavior of banana‐fiber‐reinforced phenol formaldehyde (PF) composites. The composites were subjected to water aging, thermal aging, soil burial, and outdoor weathering. The effects of chemical modification and hybridization with glass fibers on the degradability of the composites in different environments were analyzed. The extent of degradation was measured by changes in the weight and tensile properties after aging. Absorbed water increased the weight of water‐aged composites, and chemical treatments and hybridization decreased water absorption. The tensile strength and modulus of the banana/PF composites were increased by water aging, whereas the strength and modulus of the glass/PF composites were decreased by water aging. As the glass‐fiber loading was increased in the hybrid composites, the increase in strength by water aging was reduced, and at higher glass‐fiber loadings, a decrease in strength was observed. The tensile properties of the composites were increased by oven aging. The percentage weight loss was higher for soil‐aged samples than for samples weathered outdoors. The weight loss and tensile strength of the glass/PF composites and banana/glass/hybrid/PF composites were much lower than those of the banana/PF composites. Silane treatment, NaOH treatment, and acetylation improved the resistance of the banana/PF composites on outdoor exposure and soil burial. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2521–2531, 2006  相似文献   

17.
Water and water vapor sorption to porous polypropylene–zeolite composites prepared by hot pressing have been studied as a function of zeolite loading. This work presents the first report on the effect of the zeolite as a filler on the water‐sorption properties of PP composites. Water swelling experiments were conducted at 25°C using pure PP and PP–zeolite films samples having different zeolite loadings (6–40 wt %). Because PP is a hydrophobic polymer, it does not sorp any water, but the composites having 10, 20, 30, and 40% zeolites have sorbed 0.63, 1.00, 1.72 and 3.74% water, respectively. The zeolite itself at the same conditions sorbed 24.5% water. As the filler loading in the composites increased, equilibrium uptake values increased also. On the other hand, water vapor sorption and kinetics has been studied using a Cahn 2000 gravimetric sorption system. Within in the range of 0.35–0.95% water vapor was adsorbed by the composites containing 10–40 wt % zeolites. Experimental effective water vapor diffusivities of the composite films was about one order of magnitude higher (10‐fold) than the experimental water diffusion coefficient in composites. The transport of water in composites was slower than that in the liquid water due to the longer diffusion pathway and adsorption on the surface of the composites. Although the liquid water may fill all the voids in the composite, water vapor is adsorbed on the surface of the zeolite only. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3069–3075, 2003  相似文献   

18.
The weight and dimensional changes of injection‐molded glass‐fiber reinforced polyamide 66 composites based on two glass fiber products with different sizing formulations and unreinforced polymer samples have been characterized during conditioning in water, ethylene glycol, and a water‐glycol mixture at 50°C and 70°C for a range of times up to 900 h. The results reveal that hydrothermal ageing in these fluids causes significant changes in the weight and dimensions of these materials. All conditioned materials showed a time dependent weight and dimension increase. The change observed in water could be well modeled by a simple Fickian diffusion process; however, the absorption process followed a more complex pattern in the other conditioning fluids. It was not apparent that changing the glass fiber sizing affected the dimensional stability of the composites under these relatively mild conditions. There was a strong correlation between the swelling of these samples and the level of fluid absorption. The composites exhibited highly aniosotropic levels of swelling. These effects were well in line with the influence of fibers on restriction of the matrix deformation in the fiber direction. The polymer and composite swelling coefficients correlated well with data previously obtained at higher conditioning temperatures. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

19.
In the present communication, the effect of water absorptions on mechanical properties of roselle fiber reinforced vinyl ester composites prepared by wet hand lay‐up method was studied. Water absorption tests were conducted by immersing composite specimens into three different water environments, namely distilled water, ground water, and sea water, which were at room temperature, for a period of 10 days. The water absorption behavior of composite was found to follow a non‐Fickian behavior. The maximum water absorption percent and diffusion coefficient were determined from the obtained water absorption curves. The scanning electron microscopy was used for the fractographic studies on the fractured surface of composite. The results show that composites exposed to sea water environment absorb more water absorption percent than that of other water environments. It was observed that the water absorption percent increased with increasing fiber loading. Mechanical properties of dry composite specimens were compared with wet composite specimens. Mechanical properties were found to decrease with an increasing percentage of water uptakes. POLYM. COMPOS., 36:1638–1646, 2015. © 2014 Society of Plastics Engineers  相似文献   

20.
The governing kinetic behavior of water transport in a biopolymeric composite material derived from poly(β-hydroxybutyrate)-co-poly(β-hydroxyvalerate) and lignocellulosic wood flour were investigated along with the influence of temperature, wood flour content, and chemical modification (silane, maleic anhydride) on polymer and composite diffusivity. The water absorption process in both untreated and treated composites was found to follow the kinetics of Fickian diffusion theory. Diffusion coefficients for neat polymer and composite samples were experimentally determined, and the thermodynamics of diffusive water transport were observed to exhibit Arrhenius rate-law behavior. A model for predicting equilibrium moisture content in wood-polymer composites is presented and substantiated by obtained results and cited experimental data. Isodiffusion plots are presented to evaluate the effectiveness of chemical modifications, which were found to reduce the rates of water uptake. Both in- and out-of-plane dimensional changes were monitored during the absorption process, permitting the determination of moisture-dependent hydroexpansion coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号