首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiation‐crosslinked 2‐hydroxyethylmethacrylate/citric acid (HEMA/CAc), 2‐hydroxyethylmethacrylate/tartaric acid (HEMA/TA), and 2‐hydroxyethylmethacrylate/succinic acid (HEMA/Sc) copolymers were prepared by using 60Co γ‐rays. The gel fraction yield and the swelling behavior of the prepared hydrogels were studied. It was shown that increasing irradiation doses was accompanied by an increase in yield of gel fraction and a decrease in swelling degree. The parameters of equilibrium swelling, maximum swelling, initial swelling rate, swelling exponent, and diffusion coefficient of the hydrogels were determined by studying the swelling behavior of the hydrogels prepared. It was seen that the equilibrium swelling degree increases as the content of acid increases, as a result of introducing more hydrophilic groups. When the hydrophilic polymer (acids) varies in the content range of 40–80 mg, swelling exponents (n) decreases, thereby indicating a shift in the water‐transport mechanism from the anomalous (non‐Fickian)‐type to the Fickian‐type. Characterization and some selected properties of the prepared hydrogels were studied, and accordingly the possibility of its practical use in the treatment of industrial wastes such as dyes and heavy metals (Fe, Ni, Co, and Cu) were also studied. The effect of treatment time, pH of feed solution, initial feed concentration, and temperature on the dye and heavy metals uptake was determined. The uptake order for a given metal was HEMA/TA hydrogel > HEMA/CAc > HEMA/Sc hydrogel. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
This work reports the preparation of 2‐hydroxyethyl methacrylate (HEMA)/N‐vinyl‐2‐pyrrolidone (NVP) interpenetrating polymer network (IPN) hydrogels by UV‐initiated polymerization in the presence of free radical photoinitiator Darocur 1173 and cationic photoinitiator 4,4′‐dimethyl diphenyl iodonium hexafluorophosphate. The polymerization mechanism was investigated by the formation of gel network. The structure and morphology of the HEMA/NVP IPN hydrogels were characterized by fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The results showed that the IPN gels exhibited homogeneous morphology. The dehydration rates of HEMA/NVP IPN hydrogels were examined by the gravimetric method. The results revealed that the hydrogels had a significant improvement of antidehydration ability in comparison with poly(2‐hydroxyethyl methacrylate)(PHEMA) hydrogel embedded physically with poly(N‐vinyl‐2‐pyrrolidone)(PVP). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
pH‐sensitive hydrogels for biomedical applications were synthesized using a photoinitiator‐free technique involving the initiation of photopolymerization by donor/acceptor pairs. The differential photocalorimetric technique indicated a high polymerization rate for the N‐vinylpyrrolidinone (NVP, donor)/acrylic acid (AA, acceptor) pair at a 1:1 molar ratio. However, photopolymerization of larger quantities of these monomers (1:1 molar ratio) produced a water‐soluble polymer. Nevertheless, an anionic hydrogel was successfully formed when a small quantity of 2‐hydroxyethyl methacrylate (HEMA) was included in the NVP/AA formulation. A mixture of HEMA and AA, although both are classified as acceptors, photopolymerized to produce a copolymer which functioned as an anionic hydrogel. The swelling and drug release of these hydrogels were investigated in acidic, neutral and basic pH environments. Their biocompatibility with HaCaT human epidermal keratinocyte cells was tested and a positive cell growth as evidenced by the 3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5‐diphenyl tetrazolium bromide (MTT) cell proliferation assay indicated that these hydrogels have no toxic effect on HaCaT. Copyright © 2006 Society of Chemical Industry  相似文献   

4.
To improve equilibrium water content, dehydrothermally crosslinked poly(vinyl alcohol) (PVA) hydrogel was grafted with N‐vinyl pyrrolidone (NVP) or acrylic acid (AA) monomer using γ‐radiation. Swelling behavior of the grafted hydrogels was studied in phosphate‐buffered saline, and cell viability was evaluated using fibroblast cells from mouse connective tissue. Equilibrium water content of AA‐ and NVP‐grafted PVA hydrogel ranged between 40–60% and 60–80%, respectively, depending on radiation dose and monomer concentration. For maximum degree of swelling, the optimum monomer concentration and radiation dose were 20% by weight and 20 kGy, respectively. Fibroblast cells seeded on NVP‐grafted hydrogel had an extended oval morphology while those seeded on AA‐grafted PVA had a rounded spherical morphology. These results support the use of NVP for grafting PVA to increase swelling and improve cell viability. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2862–2868, 2004  相似文献   

5.
Two different hydrogels, prepared from N‐vinyl‐2‐pyrrolidone/acrylic acid (NVP/AAc) and N‐vinyl‐2‐pyrrolidone/acrylamide (NVP/AAm), were studied for the separation and extraction of some heavy‐metal ions from wastewater. The hydrogels were prepared by the γ‐radiation‐induced copolymerization of the aforementioned binary monomer mixtures. Further modification was carried out for the NVP/AAc copolymer through an alkaline treatment to improve the swelling behavior by the conversion of the carboxylic acid groups into its sodium salts. The thermal stability and swelling properties were also investigated as functions of the N‐vinyl‐2‐pyrrolidone content. The characterization and some selected properties of the prepared hydrogels were studied, and the possibility of their practical use in wastewater treatment for heavy metals such as Cu, Ni, Co, and Cr was investigated. The maximum uptake for a given metal was higher for a treated NVP/AAc hydrogel than for an untreated NVP/AAc hydrogel and was higher for an untreated NVP/AAc hydrogel than for an NVP/AAm hydrogel. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2642–2652, 2004  相似文献   

6.
Superabsorbent copolymer hydrogels were prepared by gamma irradiation of aqueous solutions of 2‐acrylamido‐2‐methylpropanesulfonic acid (AMPS) and 2‐dimethyaminoethyl methacrylate (DEMA) monomers mixtures. The thermal stability of hydrogels was evaluated by thermogravimetric analysis. The ability to adsorb Cu2+ ions and dyes by the prepared hydrogels from aqueous solutions was investigated. The swelling study, in water, showed that the hydrogels based on pure AMPS monomer and AMPS/DEMA copolymers reached the equilibrium state after 6 h. However, the hydrogel based on pure AMPS monomer showed higher swelling than the copolymer hydrogels based on AMPS/DEMA. It was found that the copolymer hydrogels based on different compositions showed affinity to absorb Cu2+ metal ions as well as basic and acid dyes; however, this affinity was found to decrease with increasing the ratio of DEMA in the initial feeding solutions. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

7.
In this work, biocompatible hydrogel matrices for wound‐dressing materials and controlled drug‐release systems were prepared from poly[hydroxyethyl methacrylate‐co‐poly(ethylene glycol)–methacrylate] [p(HEMA‐co‐PEG–MA] films via UV‐initiated photopolymerization. The characterization of the hydrogels was conducted with swelling experiments, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis (differential scanning calorimetry), and contact‐angle studies. The water absorbency of the hydrogel films significantly changed with the change of the medium pH from 4.0 to 7.4. The thermal stability of the copolymer was lowered by an increase in the ratio of poly(ethylene glycol) (PEG) to methacrylate (MA) in the film structure. Contact‐angle measurements on the surface of the p(HEMA‐co‐PEG–MA) films demonstrated that the copolymer gave rise to a significant hydrophilic surface in comparison with the homopolymer of 2‐hydroxyethyl methacrylate (HEMA). The blood protein adsorption was significantly reduced on the surface of the copolymer hydrogels in comparison with the control homopolymer of HEMA. Model antibiotic (i.e., minocycline) release experiments were performed in physiological buffer saline solutions with a continuous flow release system. The amount of minocycline release was shown to be dependent on the HEMA/PEG–MA ratio. The hydrogels have good antifouling properties and therefore are suitable candidates for wound dressing and other tissue engineering applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Semi‐interpenetrating polymer network (semi‐IPN) and fully interpenetrating polymer network (full‐IPN) hydrogels composed of alginate and poly(N‐isopropylacrylamide) were prepared with γ‐ray irradiation. The semi‐IPN hydrogels were prepared through the irradiation of a mixed solution composed of alginate and N‐isopropylacrylamide (NIPAAm) monomer to simultaneously achieve the polymerization and self‐crosslinking of NIPAAm. The full‐IPN hydrogels were formed through the immersion of the semi‐IPN film in a calcium‐ion solution. The results for the swelling and deswelling behaviors showed that the swelling ratio of semi‐IPN hydrogels was higher than that of full‐IPN hydrogels. A semi‐IPN hydrogel containing more alginate exhibited relatively rapid swelling and deswelling rates, whereas a full‐IPN hydrogel showed an adverse tendency. All the hydrogels with NIPAAm exhibited a change in the swelling ratio around 30–40°C, and full‐IPN hydrogels showed more sensitive and reversible behavior than semi‐IPN hydrogels under a stepwise stimulus. In addition, the swelling ratio of the hydrogels continuously increased with the pH values, and the swelling processes were proven to be repeatable with pH changes. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4439–4446, 2006  相似文献   

9.
Chitosan (CS) grafted poly[(acrylic acid)‐co‐(2‐hydroxyethyl methacrylate)] (CS‐g‐poly(AA‐co‐HEMA)) at different molar ratios of AA and HEMA, and the associated nanocomposite hydrogels of CS‐g‐poly(AA‐co‐HEMA)/mica were synthesized by radical copolymerization. The grafting positions at the amino or hydroxyl groups in the CS were identified by Fourier transform infrared spectroscopy. CS‐g‐poly(AA‐co‐HEMA) hydrogels were intercalated in the mica and the amount of hydrogel insertion did not affect the spacing of the silicate layers in mica. The higher mica loadings produced a rougher surface of the nanocomposite hydrogel. The water absorbency of the CS‐g‐poly(AA‐co‐HEMA)/mica nanocomposite hydrogels decreased with increasing levels of mica loading to a lower level than those of the CS‐g‐poly(AA‐co‐HEMA) hydrogels. Both CS‐g‐poly(AA) and CS‐g‐poly(AA‐co‐HEMA)/mica nanocomposite hydrogels exhibited a higher antiproliferative activity against Staphylococcus aureus than did the neat CS hydrogel with CS‐g‐poly(AA) revealing a very pronounced minimum inhibition concentration (MIC) of 1.56 mg mL?1. The extent of mica loading in the CS‐g‐poly(AA‐co‐HEMA) nanocomposite hydrogels did not affect the MIC (12.5 mg mL?1). © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
Summary: Polyelectrolyte hydrogels containing diprotic acid moieties sensitive to ionic strength changes of the swelling medium were synthesized from N,N‐diethylaminoethyl methacrylate (DEAEMA), N‐vinyl‐2‐pyrrolidone (VP) and itaconic acid (IA) by using ammonium persulfate (APS) as a free radical initiator in the presence of the cross‐linker, methylenebisacrylamide (MBAAm). The swelling behavior of the ionic poly[(N,N‐diethylaminoethyl methacrylate)‐co‐(N‐vinyl‐2‐pyrrolidone)] [P(DEAEMA/VP)] hydrogels were investigated in pure water; in NaCI solutions with pH 4 and 9; and in water‐acetone mixtures depending on the IA content in the hydrogel. The average molecular mass between cross‐links ( ) and polymer‐solvent interaction parameter (χ) of the hydrogels were determined from equilibrium swelling values. The pulsatile swelling behavior was also observed in response to solvent changes between the solution in water and in acetone. The equilibrium swelling ratio of these hydrogels was basically unaffected with change in temperature. The swelling variations were explained according to the swelling theory based on the hydrogel chemical structure.

Pulsatile swelling behavior of ionic P(DEAEMA/VP) hydrogels in response to solvent changes between water and acetone at 25 °C.  相似文献   


11.
BACKGROUND: Polymers supporting chemicals used in agriculture have recently been developed to overcome the serious environmental problems of conventional agrochemicals. The success of these formulations is based on a suitable choice of polymer support. Degradable polymeric hydrogels are of particular interest. The gradual release of the bioactive agent can be achieved by hydrolytic or enzymatic cleavage of the linking bond. RESULTS: In this context, poly[(1‐vinyl‐2‐pyrrolidone)‐co‐(2‐hydroxyethyl methacrylate)] [poly(NVP‐co‐HEMA)] has been used as a bioactive carrier reagent. Herein, we report a controlled‐release system with the herbicide 2,4‐dichlorophenoxyacetic acid (2,4‐D) using an ultrafiltration system. Hydrolysis was studied by testing the release at various pH values. A high release with poly(NVP‐co‐HEMA)–2,4‐D was observed at pH = 7 and 10 after two days (Z = 2). The release percentage of copolymer–herbicide increased at pH = 10. It showed release values between 79.0 and 94.5%. Poly(NVP‐co‐HEMA)–herbicide can release a bioactive compound in aqueous solution at pH = 3, 7 and 10. CONCLUSION: Based on the results of homogeneous hydrolysis, it is argued that the herbicide release rate depends on the pH of the reaction environment. This functional polymer could be employed as a biodegradable material for applications in agrichemical release. Copyright © 2008 Society of Chemical Industry  相似文献   

12.
Water transport in crosslinked 2‐hydroxyethyl methacrylate (HEMA) was investigated. Crosslinked HEMA was irradiated by gamma ray in vacuum for this study. The sorption data of de‐ionized water transport in crosslinked HEMA subjected to various gamma ray dosages are in excellent agreement with Harmon's model which accounts for Case I, Case II, as well as the anomalous transport processes. The diffusion coefficient for Case I transport and velocity for Case II transport satisfy the Arrhenius equation for all dosages. The transport process was exothermic and the equilibrium‐swelling ratio satisfied the van't Hoff plot. The pH value of de‐ionized water after the sorption/de‐sorption treatment of the irradiated crosslinked HEMA specimen was analyzed. The transmittance of irradiated crosslinked HEMA treated by de‐ionized water was also studied. The effect of irradiation on the polymer chains was revealed by the measurement of glass transition temperature and the quantitative determination of water structures in crosslinked HEMA hydrogel. The UV cut‐off wavelength of crosslinked HEMA shifted to longer wavelength side with increasing irradiation dosage, but the trend of transmittance after water treatment was opposite. The effect of specimen thickness on water transport was also studied.  相似文献   

13.
Hydrophobically modified poly[2‐(diethylamino)ethylmethacrylate‐co‐N‐vinyl‐2‐pyrrolidone/octadecyl acrylate) [P(DEAEMA‐co‐NVP/OA)] hydrogels were synthesized by free‐radical crosslinking copolymerization of 2‐(diethylamino)ethylmethacrylate (DEAEMA), N‐vinyl‐2‐pyrrolidone (NVP) with different amounts of hydrophobic comonomer octadecyl acrylate (OA) in tert‐butanol with ethylene glycole dimethacrylate (EGDMA) as a crosslinker. The swelling equilibrium of the hydrogels was investigated as a function of temperature and hydrophobic comonomer content in aqueous solutions of the anionic surfactant sodium dodecyl sulfate (SDS) and the cationic surfactant dodecyltrimethylammonium bromide (DTAB). The results indicated that the swelling behavior and temperature sensitivity of the hydrogels were affected by the type and concentration of surfactant solutions. Additionally, the amount of the adsorbed SDS and DTAB molecules onto the hydrogels was determined by fluorescence measurements. An increase of OA content in the hydrogel caused an increase in the amount of adsorbed surfactant molecules in both media. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3771–3775, 2007  相似文献   

14.
A series of 2‐hydroxyethyl methacrylate/1‐vinyl‐3‐(3‐sulfopropyl)imidazolium betaine (HEMA/VSIB) copolymeric gels were prepared from various molar ratios of HEMA and the zwitterionic monomer VSIB. The influence of the amount of VSIB in copolymeric gels on their swelling behavior in water and various saline solutions at different temperatures and the drug‐release behavior, compression strength, and crosslinking density were investigated. Experimental results indicated that the PHEMA hydrogel and the lower VSIB content (3%) in the HEMA/VSIB gel exhibited an overshooting phenomenon in their dynamic swelling behavior, and the overshooting ratio decreased with increase of the temperature. In the equilibrium water content, the value increased with increase of the VSIB content in HEMA/VSIB hydrogels. In the saline solution, the water content for these gels was not affected by the ion concentration when the salt concentration was lower than the minimum salt concentration (MSC) of poly(VSIB). When the salt concentration was higher than the MSC of poly(VSIB), the deswelling behavior of the copolymeric gel was more effectively suppressed as more VSIB was added to the copolymeric gels. However, the swelling behavior of gels in KI, KBr, NaClO4, and NaNO3 solutions at a higher concentration would cause an antipolyelectrolyte phenomenon. Besides, the anion effects were larger than were the cation effects in the presence of a common anion (Cl?) with different cations and a common cation (K+) with different anions for the hydrogel. In drug‐release behavior, the addition of VSIB increased the drug‐release ratio and the release rate. Finally, the addition of VSIB in the hydrogel improved the gel strength and crosslinking density of the gel. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2888–2900, 2001  相似文献   

15.
Poly(HEMA‐MAA) hydrogel particles were synthesized by redox free‐radical polymerization using 2‐hydroxyethylmethacrylate, different concentration of methacrylic acid as monomer, ethyleneglycol dimethacrylate as crosslinking agent, and APS/TEMED as free‐radical initiator. Fourier transform infrared spectrum of poly(HEMA‐MAA) hydrogels showed intense absorption peak of carbonyl group at ~ 1700 cm?1 due to carboxylic acid groups of MAA, peak at ~ 2960 cm?1 due to CH stretching and vinylic peak at 1700 cm?1 independent of MAA concentration. Highest swelling percentage 587% was observed in case of poly(HEMA‐MAA) hydrogel synthesized using 30% of MAA while lowest swelling percentage 413% was observed in hydrogel synthesized 10% of MAA at basic pH (8.0). Scanning electron micrograph of copolymeric particles showed the irregular shape of poly(HEMA‐MAA) particles with conglomeration with each due to ionization of carboxylic groups. Insulin was radiolabeled using technetium‐99m radionuclide and the radiolabeling efficiency was found to be 99%. Poly(HEMA‐MAA) hydrogel having 60% of MAA showed the highest insulin loading efficiency of 68% while lowest 37% was observed in case of 10% MAA hydrogel. Insulin release studies showed only 35–65% of insulin was released into the medium from particles at pH 2.5 in 60 min, while insulin release was significantly higher at pH 7.4. Hypoglycemic effect of the 60 and 80 I.U./kg insulin dose loaded in poly(HEMA‐MAA) copolymeric particles were carried out in fasted diabetic rats and highest decrease in blood glucose level from 506 mg/dL to 170 mg/dL was observed within first 3 h. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

16.
Poly(hydroxyethylmethacrylate‐co‐ethylene glycol dimethacrylate) [poly(HEMA‐co‐EGDMA)]‐based hydrogel devices were synthesized by a free‐radical polymerization reaction with 2‐hydroxyethylmethacrylate as the monomer, different concentrations of ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent, and ammonium persulfate/N,N,N,N′‐tetra‐methyl ethylenediamine as the free‐radical initiator. The porosity of the poly(HEMA‐co‐EGDMA) hydrogels was controlled with water as the porogen. The Fourier transform infrared spectrum of poly(HEMA‐co‐EGDMA) showed absorption bands associated with ? C?O stretching at 1714 cm?1, C? O? C stretching vibrations at 1152 cm?1, and a broad band at 3500–3800 cm?1 corresponding to ? OH stretching. Atomic force microscopy studies showed that the hydrogel containing 67% water had pores in the range of 3500–9000 nm, whereas the hydrogel containing 7% water did not show measurable pores. The hydrogel synthesized with 1% EGDMA showed 50% thallium‐201 release within the first 30 min and about 80% release within 60 min. In vitro insulin‐release studies suggested that the hydrogel with 27% water showed sustained release up to 120 min, whereas the hydrogels with 47 and 67% water showed that nearly all of the insulin was released within 60 min. Hydrogel devices synthesized with 27% water and filled with insulin particles showed sustained release for up to 8 days, whereas the hydrogels synthesized with 47 and 67% water released insulin completely within 3 days of administration. Animal studies suggested that the hydrogel devices synthesized with 27% water and filled with insulin‐loaded particles (120 IU) were able to control blood glucose levels for up to 5 days after implantation. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
A series of novel hydrogels were prepared from acrylic acid (AA), N‐vinyl pyrrolidone (NVP), and chitosan by photopolymerization. The swelling behavior, gel strength, and drug release behavior of the poly(AA/NVP) copolymeric hydrogels and corresponding interpenetrating polymer network hydrogels were investigated. Results showed that the swelling ratios for the present hydrogels decreased with an increase of NVP content in the gel, but the gel strength increased with an increase of NVP content in the gel. Results also showed that the drug‐release behavior for the gels is related to the ionicity of drug and the swelling ratio of the gel. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2135–2142, 2004  相似文献   

18.
Acrylamide/maleic acid (AAm/MA) superswelling hydrogels prepared by irradiation with γ radiation were used in experiments on swelling, diffusion, and adsorption of some water‐soluble monovalent cationic dyes such as basic red 5 (BR‐5), basic violet 3 (BV‐3), and brilliant cresyl blue (BCB). The AAm/MA hydrogel containing 60 mg MA and irradiated at 5.20 kGy was used for swelling and diffusion studies in water and aqueous solutions of the monovalent cationic dyes. For this superswelling hydrogel the swelling studies indicated that swelling increased in the following order: BR‐5 > water > BV‐3 ≥ BCB. The diffusion of water and the dyes within the hydrogels was found to have a non‐Fickian character. The uptake of the cationic dyes to the AAm/MA superswelling hydrogels was studied by the batch adsorption technique at 25°C. The uptake of dyes within the hydrogel increased in the following order: BR‐5 > BV‐3 > BCB. In the experiments of the adsorption equilibrium, S‐type adsorption in Giles' classification system was found. The binding ratio of the hydrogel/dye systems was gradually increased with the increase of the MA content in the AAm/MA hydrogel and the irradiation dose. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1809–1815, 2001  相似文献   

19.
A novel type of highly swollen hydrogels based on acrylamide (AAm) with 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS) and clay such as bentonite (Bent) crosslinked by 1,4‐butanediol dimethacrylate (BDMA) was prepared by free radical solution polymerization in aqueous media. Water uptake and dye sorption properties of polyelectrolyte AAm/AMPS hydrogels and AAm/AMPS/Bent composite hydrogels were investigated as a function of composition to find materials with swelling and sorption properties. FTIR analyses were made. Swelling experiments were performed in water and dye solution at 25°C, gravimetrically. Highly swollen AAm/AMPS and AAm/AMPS/Bent hydrogels were used in experiments on sorption of water‐soluble monovalent cationic dye such as Lauths violet “LV, (Thionin).” Swelling of AAm/AMPS hydrogels was increased up to 1,920–9,222% in water and 867–4,644% in LV solutions, while AAm hydrogels swelled 905% in water and swelling of AAm/AMPS/Bent hydrogels was increased up to 2,756–10,422% in water and 1,200–3,332% in LV solutions, while AAm/Bent hydrogels swelled 849% in water. Some swelling kinetic and diffusional parameters were found. Water and LV diffusion into hydrogels was found to be non‐Fickian in character. For sorption of cationic dye, LV into AAm/AMPS and AAm/AMPS/Bent hydrogel was studied by batch sorption technique at 25°C. The amount of the dye sorbed per unit mass removal effiency and partition coefficient of the hydrogels was investigated. The influence of AMPS content in the hydrogels to sorption was examined. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

20.
Polyelectrolyte hydrogels were synthesized from N,N‐dimethylacrylamide, acrylamide, and itaconic acid with ammonium persulfate as a free‐radical initiator in the presence of methylene(bis)acrylamide as a crosslinker. The swelling behavior of the ionic poly(N,N‐dimethylacrylamide‐co‐acrylamide) hydrogels was investigated in pure water, in KSCN solutions with pHs 4 and 9, and in water–acetone mixtures according to the itaconic acid content in the hydrogel. The pulsatile swelling behavior of these hydrogels was studied both in water–acetone and in pH 2–9 buffer solutions. Although the equilibrium swelling ratio of the hydrogels with low concentrations of itaconic acid was almost not affected by changes in the temperature, the equilibrium swelling ratio of the hydrogels with high concentrations of itaconic acid increased in the temperature range of 20–50°C. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2140–2145, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号