首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal behavior and properties of immiscible blends of polystyrene (PS) and poly(methyl methacrylate) (PMMA) with and without PS‐b‐PMMA diblock copolymer at different melt blending times were investigated by use of a differential scanning calorimeter. The weight fraction of PS in the blends ranged from 0.1 to 0.9. From the measured glass transition temperature (Tg) and specific heat increment (ΔCp) at the Tg, the PMMA appeared to dissolve more in the PS phase than did the PS in the PMMA phase. The addition of a PS‐b‐PMMA diblock copolymer in the PS/PMMA blends slightly promoted the solubility of the PMMA in the PS and increased the interfacial adhesion between PS and PMMA phases during processing. The thermogravimetric analysis (TGA) showed that the presence of the PS‐b‐PMMA diblock copolymer in the PS/PMMA blends afforded protection against thermal degradation and improved their thermal stability. Also, it was found that the PS was more stable against thermal degradation than that of the PMMA over the entire heating range. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 609–620, 2004  相似文献   

2.
An approach to achieve confined crystallization of ferroelectric semicrystalline poly(vinylidene fluoride) (PVDF) was investigated. A novel polydimethylsiloxane‐block‐poly(methyl methacrylate)‐block‐polystyrene (PDMS‐b‐PMMA‐b‐PS) triblock copolymer was synthesized by the atom‐transfer radical polymerization method and blended with PVDF. Miscibility, crystallization and morphology of the PVDF/PDMS‐b‐PMMA‐b‐PS blends were studied within the whole range of concentration. In this A‐b‐B‐b‐C/D type of triblock copolymer/homopolymer system, crystallizable PVDF (D) and PMMA (B) middle block are miscible because of specific intermolecular interactions while A block (PDMS) and C block (PS) are immiscible with PVDF. Nanostructured morphology is formed via self‐assembly, displaying a variety of phase structures and semicrystalline morphologies. Crystallization at 145 °C reveals that both α and β crystalline phases of PVDF are present in PVDF/PDMS‐b‐PMMA‐b‐PS blends. Incorporation of the triblock copolymer decreases the degree of crystallization and enhances the proportion of β to α phase of semicrystalline PVDF. Introduction of PDMS‐b‐PMMA‐b‐PS triblock copolymer to PVDF makes the crystalline structures compact and confines the crystal size. Moreover, small‐angle X‐ray scattering results indicate that the immiscible PDMS as a soft block and PS as a hard block are localized in PVDF crystalline structures. © 2019 Society of Chemical Industry  相似文献   

3.
Microphase separation behavior on the surfaces of poly(dimethylsiloxane)‐block‐poly(2,2,3,3,4,4,4‐heptafluorobutyl methacrylate) (PDMS‐b‐PHFBMA) diblock copolymer coatings was investigated. The PDMS‐b‐PHFBMA diblock copolymers were successfully synthesized via atom transfer radical polymerization (ATRP). The chemical structure of the copolymers was characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy. Surface composition was studied by X‐ray photoelectron spectroscopy. Copolymer microstructure was investigated by atomic force microscopy. The microstructure observations show that well‐organized phase‐separated surfaces consist of hydrophobic domain from PDMS segments and more hydrophobic domain from PHFBMA segments in the copolymers. The increase in the PHFBMA content can strengthen the microphase separation behavior in the PDMS‐b‐PHFBMA diblock copolymers. And the increase in the annealing temperature can also strengthen the microphase separation behavior in the PDMS‐b‐PHFBMA diblock copolymers. Moreover, Flory‐Huggins thermodynamic theory was preliminarily used to explain the microphase separation behavior in the PDMS‐b‐PHFBMA diblock copolymers.© 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Effect of block number in linear styrene‐butadiene (SB) block copolymers (BCs) on their compatibilization efficiency in blending polystyrene (PS) with polybutadiene (PB) was studied. Di‐, tri‐, or pentablocks of SB copolymers as well as their combinations were blended with the mentioned homopolymers; supramolecular structure determined by small angle X‐ray scattering method (SAXS), morphology using scanning electron microscopy (SEM) combined with image analysis (IA), and stress transfer characteristics of the blends were chosen as criteria of compatibilization efficiency of the copolymers used. It was proved that the addition of SB BCs led to remarkably finer phase structure and substantially higher toughness of PS/PB blends. Triblock copolymer showed to be the compatibilizer with higher efficiency than diblock, pentablock, and the di/triblock copolymer mixture. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
A polydimethylsiloxane‐block‐poly(methyl methacrylate) (PDMS‐b‐PMMA) diblock copolymer was synthesized by the atom transfer radical polymerization method and blended with a high‐molecular‐weight poly(vinylidene fluoride) (PVDF). In this A‐b‐B/C type of diblock copolymer/homopolymer system, semi‐crystallizable PVDF (C) and PMMA (B) block are miscible due to favorable intermolecular interactions. However, the A block (PDMS) is immiscible with PVDF and therefore generates nanostructured morphology via self‐assembly. Crystallization study reveals that both α and γ crystalline phases of PVDF are present in the blends with up to 30 wt% of PDMS‐b‐PMMA block copolymer. Adding 10 wt% of PVDF to PDMS‐b‐PMMA diblock copolymer leads to worm‐like micelle morphology of PDMS of 10 nm in diameter and tens of nanometers in length. Moreover, morphological results show that PDMS nanostructures are localized in the inter‐fibrillar region of PVDF with the addition of up to 20 wt% of the block copolymer. Increase of PVDF long period by 45% and decrease of degree of crystallization by 34% confirm the localization of PDMS in the PVDF inter‐fibrillar region. © 2018 Society of Chemical Industry  相似文献   

6.
We investigated the effect of mixing protocol on the morphology of compatibilized polymer blends made with premade compatibilizer and reactively formed in‐situ compatibilizer in a custom‐built miniature mixer Alberta Polymer Asymmetric Minimixer (APAM). The compatibilized blends show a finer morphology than uncompatibilized blends if the polymers are mixed together in the dry state and then fed into the mixer. It is found that premelting one polymer, and premixing polymers and compatibilizer, both greatly affect the compatibilized blends' morphology. The effects are complex since the dispersed phase particle size and distribution of the compatibilized blends may be smaller or larger when compared with the uncompatibilized system, depending on the material's physical and chemical properties; for example, diblock molecular weight or the preference of copolymer to migrate to a particular phase can change the final morphology. Good mobility of the copolymer to reach the interface is crucial to obtain a finer morphology. Micelles are observed when a high molecular weight diblock copolymer P(S‐b‐MMA) is used for a PS/PMMA blend. Because of its enhanced mobility, no micelles are found for a low molecular weight diblock copolymer P(S‐b‐MMA) in a PS/PMMA blend. For PS/PE/P(S‐b‐E) blends, finer morphology is obtained when P(S‐b‐E) is first precompounded with PS. Because the block copolymer prefers the PE phase, if the P(S‐b‐E) block copolymer is compounded with PE first, some remains inside the PE phase and does not compatibilize the interface. In the case of reactive blend PSOX/PEMA, premelting and holding the polymers at high temperature for 5 min decreases final dispersed phase particle size; however, premelting and holding for 10 min coarsens the morphology. POLYM. ENG. SCI. 46:691–702, 2006. © 2006 Society of Plastics Engineers.  相似文献   

7.
This paper reports about the polymerization of ε‐caprolactam monomer in the presence of low molecular weight hydroxyl or isocyanate end‐capped ethylene‐butylene elastomer (EB) elastomers as a new concept for the development of a submicron phase morphology in polyamide 6 (PA6)/EB blends. The phase morphology, viscoelastic behavior, and impact strength of the polymerization‐designed blends are compared to those of similar blends prepared via melt‐extrusion of PA6 homopolymer and EB elastomer. Polyamide 6 and EB elastomer were compatibilized using a premade triblock copolymer PA6‐b‐EB‐b‐PA6 or a pure EB‐b‐PA6 diblock reactively generated during melt‐blending (extrusion‐prepared blends) or built‐up via anionic polymerization of ε‐caprolactam on initiating ? NCO groups attached to EB chain ends (polymerization‐prepared blends). Two compatibilization approaches were considered for the polymerization‐prepared blends: (i) the addition of a premade PA6‐b‐EB‐b‐PA6 triblock copolymer to the ε‐caprolactam monomer containing nonreactive EB? OH elastomer and (ii) generation in situ of a PA6‐b‐EB diblock using EB? NCO precursor on which polyamide 6 blocks are built‐up via anionic polymerization of ε‐caprolactam. The noncompatibilized blends exhibit a coarse phase morphology, either in the extruded or the polymerization prepared blends. Addition of premade triblock copolymer (PA6‐b‐EB‐b‐PA6) to a EB? OH /ε‐caprolactam dispersion led to a fine EB phase (0.14 μm) in the PA6 matrix after ε‐caprolactam polymerization. The average particle size of the in situ reactively compatibilized polymerization‐prepared blend is about 1 μm. The notched Izod impact strength of the blend compatibilized with premade triblock copolymer was much higher than that of the neat PA6, the noncompatibilized, and the in situ reactively compatibilized polymerization blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2538–2544, 2004  相似文献   

8.
A series of polystyrene‐b‐poly(dimethylsiloxane)‐b‐polystyrene (PS/PDMS/PS) triblock copolymers had been synthesized by atom transfer radical polymerization (ATRP). The products had been characterized by Fourier transform infrared, gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis, contact angle, and scanning electron microscope. The results indicate that the PS chains have been successfully blocked onto the PDMS back bone, and the PS‐b‐PDMS‐b‐PS triblock copolymers have low‐surface tension, good thermal stability, and microphase separation configuration. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
The rheology, morphology, and mechanical properties of blends of high‐density polyethylene (HDPE) with a semiflexible liquid crystalline copolyester (SBH) were studied in order to assess the compatibilizing ability of added PE‐g‐SBH copolymers, and its dependence on the molar mass of the PE matrix, and on the technique used for blend preparation. The PE‐g‐SBH copolymers were synthesized as described in previous articles, either by the polycondensation of the SBH monomers in the presence of a functionalized PE sample containing free carboxyl groups, or by reactive blending of the latter polymer with preformed SBH. Two samples of HDPE having different molar masses, and two samples of SBH with different melt viscosity and different microstructure, were used for preparing the blends. The two components and the compatibilizer were either blended in a single batch or used to prepare binary master blends to which the third component was added at a later stage. The results indicate that the PE‐g‐SBH copolymers do, in fact, compatibilize the PE–SBH blends and that the effect is more pronounced with the lower molar mass PE matrix and with the SBH sample having lower viscosity. The experiments carried out on blends prepared with different techniques show that the compatibilizing ability of the graft copolymer is improved if the latter is first blended with either of the two main components. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 603–613, 1999  相似文献   

10.
Well‐defined poly(styrene‐block ‐dimethylsiloxane) copolymers (PS‐b ‐PDMS) with low polydispersity index (Mw /Mn ) and different compositions were synthesized by sequential anionic polymerization of styrene (S) and hexamethyl(ciclotrisiloxane) (D3) monomers. Synthesized PS‐b ‐PDMS copolymers were characterized by 1H‐nuclear magnetic resonance, size exclusion chromatography, Fourier transform infrared spectroscopy, and transmission electron microscopy. The physicochemical characterization determined that block copolymers have molar mass values close to ~135,000 g mol?1, narrow Mw /Mn < 1.3, and chemical composition ranging from low to intermediate PDMS content. Blends of these copolymers with a commercial polystyrene (PS) were obtained by melt mixing and subsequently injection. Films obtained were flexible, and showed lower transparency than the original PS matrix. On the other hand, a 10 wt % incorporation of PS‐b ‐PDMS copolymers leads to better mechanical performance by enhancing elongation at break (~8.8 times higher) and opacity values (~18 times higher). In addition, UV–Vis barrier capacity of the resulting blends is also increased (up to 400% higher). © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45122.  相似文献   

11.
Compatibility of poly(styrene) (PS)/natural rubber (NR) blend is improved by the addition of diblock copolymer of poly(styrene) and cis‐poly(isoprene) (PS‐b‐PI). The compatibilizing effect has been investigated as a function of block copolymer molecular weight, composition and concentration. The effect of homopolymer molecular weight, processing conditions and mode of addition on the morphology of the dispersed phase have also been investigated by means of optical microscopy and scanning electron microscopy. A sharp decrease in phase dimensions is observed with the addition of a few percent of block copolymers. The effect levels off at higher concentrations. The leveling off could be an indication of interfacial saturation. For concentrations below the critical value, the particle size reduction is linear with copolymer volume fraction and agrees well with the prediction of Noolandi and Hong. The addition of the block copolymer improves the mechanical properties of the blend. An attempt is made to correlate the mechanical properties with the morphology of the blends. © 2001 Society of Chemical Industry  相似文献   

12.
The compatibilization efficiency of two styrene‐butadiene‐styrene triblock copolymers with short (SB1) and long (SB2) styrene blocks was studied in polystyrene (PS)–polypropylene (PP) blends of composition 20, 50, and 80 wt % PS. The supramolecular structure of the blends was determined by small‐angle X‐ray scattering, and the morphology was studied with transmission electron microscopy and scanning electron microscopy. Structural changes in both the uncompatibilized and compatibilized blends were correlated with the values of tensile impact strength of these blends. Even though the compatibilization mechanisms were different in blends with SB1 and SB2, the addition of the block copolymers to the PS–PP 4/1 and PS–PP 1/4 blends led to similar structures and improved the mechanical properties in the same way. These block copolymers had a very slight effect on the impact strength in PS–PP 1/1 blends, exhibiting a nearly cocontinuous phase morphology. The strong migration of SB2 copolymers to the interface and of SB1 copolymers away from the interface were detected during the annealing of compatibilized PS–PP 4/1 blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2431–2441, 2004  相似文献   

13.
BACKGROUND: The phase behaviour of copolymers and their blends is of great interest due to the phase transitions, self‐assembly and formation of ordered structures. Phenomena associated with the microdomain morphology of parent copolymers and phase behaviour in blends of deuterated block copolymers of polystyrene (PS) and poly(methyl methacrylate) (PMMA), i.e. (dPS‐blockdPMMA)1/(dPS‐block‐PMMA)2, were investigated using small‐angle X‐ray scattering, small‐angle neutron scattering and transmission electron microscopy as a function of molecular weight, concentration of added copolymers and temperature. RESULTS: Binary blends of the diblock copolymers having different molecular weights and different original micromorphology (one copolymer was in a disordered state and the others were of lamellar phase) were prepared by a solution‐cast process. The blends were found to be completely miscible on the molecular level at all compositions, if their molecular weight ratio was smaller than about 5. The domain spacing D of the blends can be scaled with Mn by DMn2/3 as predicted by a previously published postulate (originally suggested and proved for blends of lamellar polystyrene‐block‐polyisoprene copolymers). CONCLUSIONS: The criterion for forming a single‐domain morphology (molecularly mixed blend) taking into account the different solubilization of copolymer blocks has been applied to explain the changes in microdomain morphology during the self‐assembling process in two copolymer blends. Evidently the criterion, suggested originally for blends of lamellar polystyrene‐block‐polyisoprene copolymers, can be employed to a much broader range of block copolymer blends. Copyright © 2008 Society of Chemical Industry  相似文献   

14.
The surface compositions of a series of polystyrene‐b‐polydimethylsiloxane (PS‐b‐PDMS) and polystyrene‐g‐polydimethylsiloxane (PS‐g‐PDMS) copolymers were investigated using ATR‐FTIR and XPS technique. The results showed that enrichment of PDMS soft segments occurred on the surface of the block copolymers as well as on that of graft copolymers. And the magnitude order of the enrichment was as follows: PS‐b‐PDMS > PS‐g‐PDMS, which was attributed to the facilitating of the movement of the PDMS segments in PS‐b‐PDMS copolymer. Meanwhile, the solvent type and the contact medium had influence on the accumulation of PDMS on the surfaces. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

15.
Poly(A)‐block‐poly(B), poly(A)‐block‐poly(B)‐block‐poly(A) and B(A)2 block copolymers were prepared through coordinated anionic ring‐opening polymerization of ε‐caprolactone (CL) and lactic acid (LA) using hydroxy‐terminated polydimethylsiloxane (PDMS) as initiator. A wide range of well‐defined combinations of PDMS‐block‐PCL and PDMS‐block‐PLA diblock copolymers, PCL‐block‐PDMS‐block‐PCL and PLA‐block‐PDMS‐block‐PLA triblock copolymers and star‐PDMS(PCL)2 copolymers were thus obtained. The number‐average molar masses and the structure of the synthesized block copolymers were identified using various analytical techniques. The thermal properties of these copolymers were established using differential scanning calorimetry. Considering PDMS‐block‐PCL copolymers, the results demonstrate the complex effect of polymer architecture and PCL block length on the ability of the PDMS block to crystallize or not. In the case of diblock copolymers, crystallization of PCL blocks originated from stacking of adjacent chains inducing the extension of the PDMS block that can easily crystallize. In the case of star copolymers, the same tendency as in triblock copolymers is observed, showing a limited crystallization of PDMS when the length of the PCL block increases. In the case of PDMS‐block‐PLA copolymers, melting and crystallization transitions of the PLA block are never observed. Considering the diblock copolymers, PDMS sequences have the ability to crystallize. © 2019 Society of Chemical Industry  相似文献   

16.
An anhydride‐terminated polystyrene (PS‐b‐Anh) as a block copolymer precursor and a copolymer (PS‐co‐TMI) of styrene (St) and 3‐isopropenyl‐α,α‐dimethylbenzene isocyanate (TMI) as a graft copolymer precursor are chosen to investigate the effect of the type of the copolymer precursor on its compatibilizing and stabilizing efficiency for polymer blends. Results show that during the melt blending of the PS and PA6, the addition of PS‐b‐Anh dramatically decreases the size of the dispersed phase domains, irrespective of its molecular weight. This indicates that a diblock copolymer PS‐block‐PA6 (PS‐b‐PA6) is formed by a reaction between the terminal anhydride moiety of the PS‐b‐Anh and the terminal amine group of the PA6. When PS/PA6 (30/70) blends are annealed at 230°C for 15 min, their morphologies are much more stable in the presence of the PS‐b‐Anh block copolymer precursor than in the presence of the PS‐co‐TMI graft copolymer precursor. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Polydimethylsiloxane‐block‐polystyrene‐block‐polydimethylsiloxane (PDMS‐b‐PS‐b‐PDMS) was synthesized by the radical polymerization of styrene using a polydimethylsiloxane‐based macroazoinitiator (PDMS MAI) in supercritical CO2. PDMS MAI was synthesized by reacting hydroxy‐terminated PDMS and 4,4′‐azobis(4‐cyanopentanoyl chloride) (ACPC) having a thermodegradable azo‐linkage at room temperature. The polymerization of styrene initiated by PDMS MAI was investigated in a batch system using supercritical CO2 as the reaction medium. PDMS MAI was found to behave as a polyazoinitiator for radical block copolymerization of styrene, but not as a surfactant. The response surface methodology was used to design the experiments. The parameters used were pressure, temperature, PDMS MAI concentration and reaction time. These parameters were investigated at three levels (?1, 0 and 1). The dependent variable was taken as the polymerization yield of styrene. PDMS MAI and PDMS‐b‐PS‐b‐PDMS copolymers obtained were characterized by proton nuclear magnetic resonance and infrared spectroscopy. The number‐ and weight‐average molecular weights of block copolymers were determined by gel permeation chromatography. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
The AB type diblock PS‐b‐PEO and ABA type triblock PS‐b‐PEO‐b‐PS copolymers containing the same proportions of polystyrene (PS) and poly(ethylene oxide) (PEO) but different connection sequence were synthesized and investigated. Using the sequential living anionic polymerization and ring‐opening polymerization mechanisms, diblock PS‐b‐PEO copolymers with one hydroxyl group at the PEO end were obtained. Then, using the classic and efficient Williamson reaction (realized in a ‘click’ style), triblock PS‐b‐PEO‐b‐PS copolymers were achieved by a coupling reaction between hydroxyl groups at the PEO end of PS‐b‐PEO. The PS‐b‐PEO and PS‐b‐PEO‐b‐PS copolymers were well characterized by 1H NMR spectra and SEC measurements. The critical micelle concentration (CMC) and thermal behaviors were also investigated by steady‐state fluorescence spectra and DSC, respectively. The results showed that, because the PEO segment in triblock PS‐b‐PEO‐b‐PS was more restricted than that in diblock PS‐b‐PEO copolymer, the former PS‐b‐PEO‐b‐PS copolymer always gave higher CMC values and lower crystallization temperature (Tc), melting temperature (Tm) and degree of crystallinity (Xc) parameters. © 2015 Society of Chemical Industry  相似文献   

19.
Poly(methyl methacrylate) (PMMA) containing 50 wt% of anthracene (anth) labeled reactive PMMA chains [thus end‐capped by an anhydride (anh) or an isocyanate (NCO)] has been melt blended with polystyrene containing 33 wt% of chains end‐capped by an aliphatic amine (PS‐NH2) at 180°C. Conversion of anth‐PMMA‐anh and anth‐PMMA‐NCO into PMMA‐b‐PS copolymers has been determined by SEC with a UV detector. The interfacial reaction mainly occurs in the initial mixing stage (?1.0 min), although at a rate which depends on the reactive groups attached to PMMA. Moreover, this interfacial reaction rate controls how the phase morphology is developed.  相似文献   

20.
Systems containing block copolymers are of great interest due to the ability of copolymers to self-assemble into a variety of structured, ordered, or partially ordered morphologies. A fascinating morphology of two-dimensional arrays of hexagonal-like holes was observed for the first time in the diblock copolymer of poly (ethylene oxide)-b-polystyrene (PEO-b-PS) by transmission electron microscopy (TEM). The blends of PEO-b-PS with poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) were obtained by solution blending, and the morphologies of PEO nano-dispersed particles in PPO/PS matrix were observed by atomic force microscopy (AFM) and TEM. Using the film forming technique on water/air interface, the core-shell morphology with PEO as shells was obtained in PEO-b-PS/PPO blends. Thus, three different morphologies were obtained by controlling preparation conditions. Especially, PEO-b-PS self-organized into the hexagonal-like holes patterns was first found to our knowledge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号