首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ene reaction between plant oil triglycerides (such as soybean and sunflower oils) and paraformaldehyde was used to introduce a homoallylic hydroxyl functionality on the triglyceride. Paraformaldehyde and triglyceride were reacted in the presence of a Lewis acid catalyst, ethylaluminum dichloride, and hydroxymethyl derivatives were obtained at yields of 42 and 55% for sunflower oil and soybean oil, respectively. In the next step, hydroxymethyl products were reacted with maleic anhydride at 100°C to produce the maleate half esters. The average number of maleate groups per triglycerides was found to be 1.7 for soybean oil and 1.3 for sunflower oil. In the final step, the free‐radical–initiated copolymerization of the maleinized triglycerides with styrene produced rigid polymers. Characterization of new monomers and polymers was done by 1H‐NMR, 13C‐NMR, and infrared and mass spectrometries. The swelling behavior of the crosslinked network polymers was determined in different solvents. The glass‐transition temperature of the cured resin was also determined by differential scanning calorimetry to be 40°C for soybean‐based polymer and 30°C for sunflower‐based polymer. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 4037–4046, 2004  相似文献   

2.
The Ritter reaction of plant oil triglycerides (such as soybean and sunflower oil) with acrylonitrile was used to introduce acrylamide functionality on the triglyceride. Acrylonitrile and triglycerides were reacted in the presence of H2SO4, and acrylamide derivatives were obtained in yields of 45 and 50% for sunflower oil and soybean oil, respectively. Radical initiated copolymerization of the acrylamide derivatives of the triglycerides with styrene produced semirigid polymers. Characterization of new monomers and polymers was done by 1H‐NMR, 13C‐NMR, IR, and MS. The swelling behavior of the crosslinked network polymers was determined in different solvents. Glass transiton temperature (Tg) of the cured resin was also determined by differential scanning calorimeter to be 40°C for soybean based polymer and 30°C for sunflower‐based polymer. Homo‐ and copolymerization behavior of acrylamide derivatives of methyl oleate (MOA) and methyl 10‐undecenoate (MUA) were also investigated. The reactivity ratios of these monomers with respect to styrene were determined by the Fineman–Ross method using 1H‐NMR spectroscopic data. The reactivity ratios were rsty = 1.776; rmoa = 0512 for MOA, and rsty = 1.142; rmua = 0.507 for MUA, respectively. Photopolymerization behaviors of MOA and MUA were also investigated using the photoDSC technique and the rate of polymerization of MUA is higher than that of MOA under the same conditions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2264–2272, 2005  相似文献   

3.
In the first part of this study, simultaneous addition of bromine and acrylate to the double bonds of castor oil was achieved. In the second part of the study, bromoacrylated castor oil (BACO) was reacted with toluenediisocyanate (TDI), to form a prepolyurethane (BACOP). The prepolyurethanes were reacted with styrene (STY), 2‐hydroxyethyl methacrylate (HEMA), methyl methacrylate (MMA), and 3‐(acryloxy)‐2‐hydroxy propyl methacrylate (AHPMA) free radically, using the acrylate functional group to prepare the simultaneous interpenetrating polymer networks (SINs). 2,2′‐Azobis (isobutyronitrile) (AIBN) was used as the initiator and diethylene glycol dimethacrylate (DEGDMA) was used as the crosslinker. BACO and BACOP were characterized by IR, 1H‐NMR, and 13C‐NMR techniques. Synthesized polymers were characterized by their resistance to chemical reagents, thermogravimetric analysis, and dynamic mechanical thermal analyzer (DMTA). All the polymers decomposed with 6–10% weight loss in a temperature range of 25–240°C. MMA‐type SIN showed the highest Tg (126°C), while STY‐type SINs showed the highest storage modulus (8.6 × 109 Pa) at room temperature, with respect to other synthesized SINs. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2947–2955, 2006  相似文献   

4.
In this study, methyl oleate was bromoacrylated in the presence of N‐bromosuccinimide and acrylic acid in one step. Homopolymers and copolymers of bromoacrylated methyl oleate (BAMO) were synthesized by free radical bulk polymerization and photopolymerization techniques. Azobisisobutyronitrile (AIBN) and 2,2‐dimethoxy‐2‐phenyl‐acetophenone were used as initiators. The new monomer BAMO was characterized by FTIR, GC‐MS, 1H, and 13C‐NMR spectroscopy. Styrene (STY), methylmethacrylate (MMA), and vinyl acetate (VA) were used for copolymerization. The polymers synthesized were characterized by FTIR, 1H‐NMR, 13C‐NMR, and differential scanning calorimetry (DSC). Molecular weight and polydispersities of the copolymers were determined by GPC analysis. Ten different feed ratios of the monomers STY and BAMO were used for the calculation of reactivity ratios. The reactivity ratios were determined by the Fineman–Ross and Kelen–Tudos methods using 1H‐NMR spectroscopic data. The reactivity ratios were found to be rsty = 0.891 (Fineman–Ross method), 0.859 (Kelen–Tudos method); rbamo = 0.671 (Fineman–Ross method), 0.524 (Kelen–Tudos method). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2475–2488, 2004  相似文献   

5.
In this study, rigid thermoset polymers were prepared from radical copolymerization of the soybean oil monoglyceride maleates with styrene. In the first part of the study, soybean oil monoglycerides (SOMGs) were obtained from the reaction of soybean oil with glycerol at 220–240°C with an optimization of the reaction to maximize the monoglyceride yield. In the following step, SOMG were reacted with maleic anhydride at temperatures around 100°C to produce the SOMG maleate half esters. Different catalysts and different reaction conditions were examined to increase the maleate half esters' yields. The reactions were followed by IR and 1H NMR, and the products were characterized by mass spectrometry. In the final step, the radical initiated copolymerization of the SOMG maleates with styrene produced rigid, thermoset polymers. The emulsion copolymerization of the SOMG maleates with styrene was also carried out successfully without the addition of an emulsifier. The obtained polymers were characterized by IR and the crosslinked network structure of the copolymers was examined with the swelling behavior in different solvents. Mechanical properties of the cured resin such as Tg, dynamic flexural modulus, and surface hardness were also determined. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 69–77, 2001  相似文献   

6.
In this study, styrene maleic anhydride copolymer (SMA2000, Styrene : Maleic Anhydride 2 : 1) is grafted and/or crosslinked with epoxidized methyl oleate, epoxidized soybean oil, methyl ricinoleate (MR), castor oil (CO), and soybean oil diglyceride. Base catalyzed epoxy‐anhydride and alcohol‐anhydride polyesters were synthesized by using the anhydride on SMA, the epoxy or secondary alcohol groups on the triglyceride based monomers. The characterizations of the products were done by DMA, TGA, and IR spectroscopy. SMA‐epoxidized soy oil and SMA‐CO polymers are crosslinked rigid infusible polymers. SMA‐epoxidized soy oil and SMA‐CO showed Tg's at 70 and 66°C, respectively. Dynamic moduli of the two polymers were 11.73 and 3.34 Mpa respectively. SMA‐epoxidized methyl oleate, poly[styrene‐co‐(maleic anhydride)]‐graft‐(methyl ricinoleate), and SMA‐soy oil diglyceride polymers were soluble and thermoplastic polymers and were characterized by TGA, GPC, DSC, NMR, and IR spectroscopy. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
The cationic copolymerization of regular soybean oil, low‐saturation soybean oil (LoSatSoy oil), or conjugated LoSatSoy oil with styrene and divinylbenzene initiated by boron trifluoride diethyl etherate (BF3·OEt2) or related modified initiators provides viable polymers ranging from soft rubbers to hard, tough, or brittle plastics. The gelation time of the reaction varies from 1 × 102 to 2 × 105 s at room temperature. The yields of bulk polymers are essentially quantitative. The amount of crosslinked polymer remaining after Soxhlet extraction ranges from 80 to 92%, depending on the stoichiometry and the type of oil used. Proton nuclear magnetic resonance spectroscopy and Soxhlet extraction data indicate that the structure of the resulting bulk polymer is a crosslinked polymer network interpenetrated with some linear or less‐crosslinked triglyceride oil–styrene–divinylbenzene copolymers, a small amount of low molecular weight free oil, and minor amounts of initiator fragments. The bulk polymers possess glass‐transition temperatures ranging from approximately 0 to 105°C, which are comparable to those of commercially available rubbery materials and conventional plastics. Thermogravimetric analysis (TGA) indicates that these copolymers are thermally stable under 200°C, with temperatures at 10% weight loss in air (T10) ranging from 312 to 434°C, and temperatures at 50% weight loss in air (T50) ranging from 445 to 480°C. Of the various polymeric materials, the conjugated LoSatSoy oil polymers have the highest glass‐transition temperatures (Tg) and thermal stabilities (T10). The preceding properties that suggest that these soybean oil polymers may prove useful where petroleum‐based polymeric materials have found widespread utility. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 658–670, 2001  相似文献   

8.
Maleic anhydride modified soybean‐ and castor‐oil‐based monomers, prepared via the malination of the alcoholysis products of the oils with various polyols, such as pentaerythritol, glycerol, and bisphenol A propoxylate, were copolymerized with styrene to give hard rigid plastics. These triglyceride‐based polymers exhibited a wide range of properties depending on their chemical structure. They exhibited flexural moduli in the 0.8–2.5 GPa range, flexural strength in the 32–112 MPa range, glass transition temperatures (Tg) ranging from 72 to 152°C, and surface hardness values in the 77–90 D range. The polymers prepared from castor oil exhibited significantly improved modulus, strength, and Tg values when compared with soybean‐oil‐based polymers. These novel castor and soybean‐oil‐based polymers show comparable properties to those of the high‐performance unsaturated polyester (UP) resins and show promise as an alternative to replace these petroleum‐based materials. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1497–1504, 2006  相似文献   

9.
In this study, castor oil was alcoholyzed with both aliphatic alcohols, such as glycerol and pentaerythritol, and an aromatic alcohol, bisphenol A propoxylate. The resulting alcoholysis products were then malinated and cured in the presence of styrene. Soybean oil pentaerythritol glyceride maleates were also prepared for a direct comparison of the properties of the castor oil and soybean oil based resins. Castor oil was directly malinated as well to see the effect of the alcoholysis step on the properties of the castor oil based resins. The monomers synthesized were characterized by 1H‐NMR spectroscopy, and the styrenated resin liquid properties, such as viscosity and surface energy values, were determined. The conversion of polymerization was determined using time resolved FTIR analysis for the styrenated soybean oil pentaerythritol glyceride maleates, castor oil maleates, and castor oil pentaerythritol glyceride maleates. The effect of monomer identity and styrene content on the conversion of polymerization was explored. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2433–2447, 2006  相似文献   

10.
Biobased thermosets resins were synthesized by functionalizing the triglycerides of epoxidized soybean oil with methacrylic acid, acetyl anhydride, and methacrylic anhydride. The obtained resins were characterized with FTIR, 1H‐NMR, and 13C‐NMR spectroscopy to confirm the functionalization reactions and the extent of epoxy conversion. The viscosities of the methacrylated soybean oil resins were also measured for the purpose of being used as a matrix in composite applications. The cross‐linking capability was estimated by UV and thermally initiated curing experiments, and by DSC analysis regarding the degree of crosslinking. The modifications were successful because up to 97% conversion of epoxy group were achieved leaving only 2.2% of unreacted epoxy groups, which was confirmed by 1H‐NMR. The 13C‐NMR confirms the ratio of acetate to methacrylate methyl group to be 1 : 1. The viscosities of the methacrylated soybean oil (MSO) and methacrylic anhydride modified soybean oil (MMSO) were 0.2 and 0.48 Pas, respectively, which indicates that they can be used in resin transfer molding process. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
In this study, a novel and simple route for the synthesis of the iodine isocyanate (INCO) adduct of soybean oil triglycerides is described. Soybean oil iodo isocyanate (ISONCO) was synthesized by the reaction of iodine isocyanate and soybean oil at room temperature. ISONCO was then polymerized with polyols, such as, castor oil, pentamethylene glycol, and glycerol to give the corresponding polyurethanes and with polyamines, such as, ethylene diamine, hexamethylene diamine, and triethylene tetramine to give corresponding polyureas. The structures of the monomer and the polymers were determined by FTIR and 1H‐NMR analyses. Thermal properties of the polymers were determined by DSC and TGA. Thermal degradation of the polyurethanes started at 150°C. Stability of the polyureas was higher than polyurethanes. Almost all polymers showed a Tg around ?50°C. The mechanical properties of the polymers were determined by tensile tests. Among the polymers synthesized, castor oil polyurethane showed the highest elongation at break and the lowest tensile strength of 140 KPa. The highest tensile strength of 900 KPa was observed in the pentamethylene glycol polyurethanes. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
In this study, a fatty acid‐based comonomer is employed as a styrene replacement for the production of triglyceride‐based thermosetting resins. Styrene is a hazardous pollutant and a volatile organic compound. Given their low volatility, fatty acid monomers, such as methacrylated lauric acid (MLA), are attractive alternatives in reducing or eliminating styrene usage. Different triglyceride‐derived cross‐linkers resins were produced for this purpose: acrylated epoxidized soybean oil (AESO), maleinated AESO (MAESO), maleinated soybean oil monoglyceride (SOMG/MA) and maleinated castor oil monoglyceride (COMG/MA). The mechanical properties of the bio‐based polymers and the viscosities of bio‐based resins were analyzed. The viscosities of the resins using MLA were higher than that of resins with styrene. Decreasing the content of MLA increased the glass transition temperature (Tg). In fact, the Tg of bio‐based resin/MLA polymers were on the order of 60°C, which was significantly lower than the bio‐based resin/styrene polymers. Ternary blends of SOMG/MA and COMG/MA with MLA and styrene improved the mechanical properties and reduced the resin viscosity to acceptable values. Lastly, butyrated kraft lignin was incorporated into the bio‐based resins, ultimately leading to improved mechanical properties of this thermoset but with unacceptable increases in viscosity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Epoxidized soybean oil‐based paper composites (ESOPCs) were prepared by fabricating poly epoxidized soybean oil (PESO) with paper. With boron trifluride diethyl etherate as catalyst, epoxidized soybean oil was in situ polymerized on the surface of the paper and within the interspaces of the paper cellulose fibers. Fourier transform infrared analysis confirmed the polymerization of epoxidized soybean oil. Scanning electron microscopic analysis showed that ESOPCs had nanostructured wrinkle morphology on the surfaces and the PESO combined tightly with the paper cellulose fibers. The tensile strength of ESOPCs was 17.3–24.8 MPa, which was higher than that of most vegetable oil‐based neat polymers. Thermogravimetric analysis indicated that ESOPCs were thermally stable up to 360°C in a nitrogen atmosphere. Water vapor permeability (WVP) tests revealed that the WVP of ESOPCs was 3.52–4.45 × 10?12 g/m/s/Pa, significantly lower than many of other biobased polymeric materials, which would promote the application of vegetable‐based polymers as potential water‐resistant materials. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41575.  相似文献   

14.
Resins containing plant oil‐based cross‐linkers were studied with two reactive diluents: a styrene and an acrylated fatty acid methyl ester‐based (AFAME) monomer. Acrylated epoxidized soybean oil and maleinated castor oil monoglyceride were bio‐based cross‐linkers used. The viscosity and mechanical properties of the resulting polymers were measured and analyzed. Both bio‐based cross‐linkers prepared using the modified AFAME as diluent had a fairly high viscosity, so blends of AFAME and styrene were needed to meet the viscosity requirements established by the composite industry (<1000 cP at room temperature). In addition, the glass transition temperature (Tg) and stiffness of bio‐based cross‐linker/AFAME polymers were significantly lower than the resin/styrene polymers. Ternary blends of maleinated castor oil monoglyceride with AFAME and styrene improved the mechanical properties to acceptable comparable values (storage modulus at 30°C ~ 1200 MPa and Tg ~ 100°C). The addition of 5 wt% of chemically modified lignin led to an improvement in the mechanical properties of the polymeric matrix but caused an increase in the viscosity. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

15.
The reliability of a method using 1H NMR analysis for assessment of oil oxidation at frying temperatures was examined. During heating and frying at 180 °C, changes of soybean oil signals in the 1H NMR spectrum including olefinic (5.16–5.30 ppm), bisallylic (2.70–2.88 ppm), and allylic (1.94–2.15 ppm) proton signals relative to glyceride backbone CH2 (5.30–5.46 ppm) and aliphatic CH2 (1.05–1.71 ppm) signals showed strong correlations with conventional analytical methods including total polar compounds, polymerized triacylglycerols, and changes of linoleic acid and linolenic acid peaks in gas chromatography. For oils rich in oleic acid, mid‐oleic sunflower oil (NuSun) and high oleic soybean oil, only the olefinic and allylic proton signals are recommended for analysis due to the relatively low intensity of the bisallylic proton signal. Under these heating and frying conditions, signals indicating intermediate oxidation products, hydroperoxides, were not detected while very small signals corresponding to a variety of aldehydes including alkanal, branched alkenal, 2‐alkenal, and aldehydes of conjugated dienes and epoxides were observed. In this study, it was found that the 1H NMR method is a fast, convenient, and reliable analytical method to determine the oxidation state of frying oil.  相似文献   

16.
Two different blocked isocyanates, diphenylmethane–bis‐4,4′‐ethyleneurea and diphenylmethane–bis‐4,4′‐carbamoil–ϵ‐caprolactam, and isocyanated soybean oil were used as chain extenders for low‐molecular‐weight unsaturated polyesters. Oligomeric polyesters (molecular weight = 600–700), taken from a manufacturing process in the sixth hour of a 16‐h polyesterification reaction, were reacted with these chain extenders, and the desired chain lengths (molecular weight = 1000–1500) were obtained in a very short time through the reaction of the chain extenders with the polyester end groups. The increase in the molecular weight was monitored with gel permeation chromatography. The obtained polymers were characterized with Fourier transform infrared and 1H‐NMR and with styrene solubility and gel time measurements. After dilution with styrene, the polyesters were cured with a radical initiator. The thermal and mechanical properties of the cured polyesters were examined with dynamic mechanical analysis and thermogravimetric analysis tests and then compared to those of a commercially available reference unsaturated polyester. The results show that unsaturated polyesters can be chain‐extended with these compounds to shorten the polyesterification time substantially without alterations of the styrene solubility or gel time of the polyesters. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Epoxidized soybean oil was reacted with cinnamic acid with triphenyl phosphine as a catalyst. Cinnamic acid reacted with 79% of the available epoxy groups, and this yielded cinnamate esters of epoxidized soybean oil (ESOCA). 1H‐NMR, IR, and mass spectra of the new cinnamate derivatives confirmed the proposed structure. The mass spectra revealed that the average number of cinnamate groups per triglyceride molecule was 3.33. ESOCA could be photopolymerized with UV light. ESOCA could also be homopolymerized into a soft and insoluble polymer by free‐radical initiation and copolymerized with styrene, vinyl acetate, and methyl methacrylate. A mixture of ESOCA with 25 wt % styrene had a viscosity of 410 cP and could be free‐radically polymerized with benzoyl tert‐butyl peroxide at elevated temperatures. Differential scanning calorimetry confirmed the formation of copolymers. The ESOCA homopolymer and its copolymers all showed a first‐order transition by differential scanning calorimetry around ?1.5°C that was attributable to side‐chain relaxations of the triglyceride fatty acids. The styrene copolymer of ESOCA showed a tan δ peak at 66.6°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3882–3888, 2003  相似文献   

18.
A family of new polymers based on poly(4‐(1‐hydroxyalkyl)styrene), and its copolymers with styrene were synthesized and thoroughly characterized by 1H‐NMR, 13C‐NMR, FTIR, and UV spectroscopies. The chemical modification reactions of polystyrene (PS) was used as a novel method of performing the synthesis of poly(4‐(1‐hydroxyethyl‐co‐styrene)), poly(4‐(1‐hydroxypropyl‐co‐styrene)), poly(4‐(1‐hydroxybutyl‐co‐styrene)), and poly(4‐(1‐hydroxyphenylmethyl‐co‐styrene)). The novelty of this method lies in the incorporation of the desired mol % of the functional groups in polystyrene chain, to obtain random copolymers of desired composition. In preliminary testing/evaluation studies the utility and versatility of the new copolymers, which have the potential to be negative‐tone photoresist materials, were studied. Thus a few photoresist formulations based on poly(styrene‐co‐4‐(1‐hydroxyalkylstyrene)) were developed with 5 wt % of a photoacid generator. These studies suggested that the new copolymers synthesized by a simple and alternate method could have the same potential as a photoresist material when compared with the polymers synthesized by the polymerization of the corresponding functional monomer. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1902–1914, 2004  相似文献   

19.
In this study, an easy and efficient synthesis of unsaturated plant oil triglycerides having isocyanate groups is reported. In the first step of the synthesis, the triglyceride was brominated at the allylic positions by a reaction with N‐bromosuccinimide, and in the second step, these brominated species were reacted with AgNCO to convert them to isocyanate‐containing triglycerides. At the end of the reaction, approximately 60–70% of the bromine was replaced by NCO groups, and the double bonds of the triglyceride were not consumed. When the amount of AgNCO was increased, the yield also increased. The final products were characterized with IR and 1H‐NMR, and polyurethanes and polyureas were obtained from these fatty isocyanates with alcohols and amines, respectively. The polymers were characterized by differential scanning calorimetry and thermogravimetric analysis. Differential scanning calorimetry curves showed that glycerin polyurethane showed a glass‐transition temperature at 19°C, castor oil polyurethane showed two glass‐transition temperatures at ?43 and 36°C, and triethylene tetraamine polyurea showed a glass‐transition temperature at 31°C. Some properties of the polymers, such as the tensile strength and swelling ratios, were also determined. The swelling rate of glycerin polyurethane was higher than that of castor oil polyurethane in dichloromethane. The equilibrium swelling ratio was highest for the castor oil polyurethane. The polyurethanes synthesized in this study had a Young's modulus around 50 kPa and a tensile strength around 0.01 N/mm2 (100 kPa). The tensile strength of glycerin polyurethane was higher than that of castor oil polyurethane. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
A vegetable oil based high performance associative thickener has been designed and synthesized from a hydroxyl functional soybean oil derivative (hydroxyl value 159 mg KOH/g). An isocyanate‐terminated prepolymer was synthesized from polyethylene glycol (PEG) and isophorone diisocyanate (IPDI), and end‐capped with the hydroxyl functional soybean oil derivative to prepare a hydrophobically modified ethoxylated polyurethane (HEUR) thickener. The synthesis was monitored by infrared spectroscopy via the isocyanate peak at 2258–2270 cm?1. Thickener efficiency was tested with a commercial styrene–acrylic latex UCAR? 443, an acrylic latex Acronal® Optive 130 and an alkyd emulsion WorléeSol® E 150W. High thickening efficiency was noted in the low shear region, e.g., 0.5 wt % HEUR loading with UCAR 443 increased viscosity from 0.66 P to 3.06 P at a shear rate of 1333 s?1. The effect of soybean oil fatty amide based rheology modifier as additive in coating was evaluated in terms of gloss, viscosity, sag resistance, and flow and leveling properties. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1530–1538, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号