首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Adsorption of puerarin on native resin polystyrene (PS) and oligo‐β‐cyclodextrin‐coupled matrix (PS‐CDP) was studied for interactions between the adsorbents and the adsorbates. The sorption mechanism on PS‐CDP was investigated using the isosteric heat approach and nuclear magnetic resonance (NMR) spectroscopy. RESULTS: The equilibrium adsorption data of puerarin on the two matrices PS and PS‐CDP (polystyrene‐based matrix before and after coupling by oligo‐β‐cyclodextrin) in the temperature range 288–318 K were well fitted to the Freundlich adsorption isotherm model. The energetic heterogeneity of the media was observed based on the result that the values of isosteric enthalpy were quantitatively correlated with the fractional loading of puerarin adsorption. The more heterogeneous surface of PS‐CDP compared with PS was attributed to the complexation between puerarin and β‐cyclodextrin (β‐CD). NMR studies validated the formation of an inclusion complex puerarin/β‐CD. CONCLUSION: Thermodynamic and NMR studies confirmed that multi‐interaction cooperatively governed the isolation of puerarin from aqueous solution on PS‐CDP matrix. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
Two new adsorbents [β‐cyclodextrin–chitosan (β‐CD–CTS) and β‐cyclodextrin‐6–chitosan (β‐CD‐6‐CTS)] were synthesized by the reaction of β‐cyclodextrin (β‐CD) with epoxy‐activated chitosan (CTS) and the sulfonation of the C‐6 hydroxyl group of β‐cyclodextrin with CTS, respectively. Their structures were confirmed by IR spectral analysis and X‐ray diffraction analysis, and their apparent amount of grafting was determined by ultraviolet spectroscopy. The adsorption properties of β‐CD‐CTS and β‐CD‐6‐CTS for p‐dihydroxybenzene were studied. The experimental results showed that the two new adsorbents exerted adsorption on the carefully chosen target. The highest saturated capacity of p‐dihydroxybenzene of β‐CD‐CTS and β‐CD‐6‐CTS were 51.68 and 46.41 mg/g, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 860–864, 2004  相似文献   

3.
A novel linear water‐soluble β‐cyclodextrin polymer has been prepared by grafting β‐cyclodextrin on poly[(methyl vinyl ether)‐alt‐(maleic anhydride)]. First, lithium hydride was used to obtain the mono‐alkoxide β‐CD. Grafting of β‐CD derivatives to the polymer backbone was then carried out by an esterification method. Using this method, polymers containing various amounts of β‐CD were synthesized. The resulting grafted polymers were characterized by two complementary methods, 1H NMR and IR spectroscopy. The first was used to calculate the degree of substitution for the low amounts of β‐CD. The second method was very useful to evaluate the degree of substitution and the molar ratio of CD especially for high amounts of grafting. Our results indicate good agreement between both methods for intermediate rates. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
Attachment of β‐cyclodextrin (β‐CD) molecules on cotton textile provides hosting cavities that can include a large variety of guest molecules for specific functionality. Five different new and existing techniques were evaluated for connecting β‐CD and its derivatives to cotton surface. A comparison has been made in terms of maximum attachment of β‐CD on cotton surface. Novel chemical based crosslinking with homo‐bi‐functional reactive dye (C.I. reactive black 5) and grafting with reactive monochlorotriazinyl‐β‐cyclodextrin show maximum attachment to cotton surface. Innovative, enzymatic coupling of especially synthesized 6‐monodeoxy‐6‐mono(N‐tyrosinyl)‐β‐cyclodextrin was performed on cotton textile surface. Enzymatic coupling was also carried out in a homogeneous system and attachment confirmed by UV–vis spectroscopy. This tyrosinase mediated coupling is low temperature and very specific technique. A phenolphthalein based analytical method was partially modified to reliably measure the amount of attached β‐CD on cotton surface. Atomic force microscopy and scanning electron microscopy techniques were used for surface characterization of the treated and untreated cotton surfaces. Alteration in surface topography has been observed for β‐CD treated samples. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
A β‐cyclodextrin derivative grafted chitosan (CDD‐C) was synthesized with chitosan and carboxymethyl‐β‐cyclodextrin (β‐CD). Its structure was characterized by elemental, infrared spectra, and X‐ray diffraction analyses. The degree of substitution by the carboxymethyl‐β‐CD moiety achieved 0.27 with the addition of DMF to the reaction solution. The results are in agreement with the expectations. The static adsorption properties for guanosine, cytidine, and uridine were studied. Experimental results demonstrated that CDD‐C had higher adsorption capability for guanosine than cytidine and uridine, and the adsorption capacity for guanosine was 74.20 mg/g. The adsorption capacity was greatly influenced by pH, time, and temperature. The introduction of chitosan enhanced the adsorption ability and adsorption selectivity of β‐CD for guanosine. This novel derivative of chitosan is expected to have wide applications in separation, concentration, and analysis of guanosine, cytidine, and uridine in biological sample. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3050–3055, 2007  相似文献   

6.
A new triphenylphosphane based on a β‐cyclodextrin skeleton (PM‐β‐CD‐OTPP) was synthesized. This ligand can be dispersed in water by using the nanoprecipitation method. Transmission electron microscopy and NMR spectroscopy showed that PM‐β‐CD‐OTPP is aggregated in water and forms a stable dispersion. Its aqueous solubility can be dramatically increased in the presence of selected water‐soluble guests by formation of inclusion complexes. Associated to a rhodium precursor, PM‐β‐CD‐OTPP is able to generate soluble rhodium species in water. In addition, NMR experiments showed that the cyclodextrin cavity remains accessible for a guest even when PM‐β‐CD‐OTPP is coordinated to rhodium. Finally, this ligand was efficient for rhodium‐catalyzed hydrogenation and hydroformylation performed in aqueous medium.  相似文献   

7.
BACKGROUND: Because of its high demand for use in pharmaceutical products, cosmetics, soil remediation technologies, etc., randomly methylated β‐cyclodextrin (RM‐β‐CD) is one of the most important cyclodextrin (CD) derivatives. The aim of this present work is to use a green and commercially available approach to obtain RM‐β‐CD. Compared with other methylated CDs, RM‐β‐CD with an asymmetric molecular structure has higher water solubility. When the degree of substitution (DS) is about 1.8, the solubility tends to increase with increasing temperature and is suitable for pharmaceutical applications. RESULTS: RM‐β‐CD was synthesized using a green approach with ideal DS equal to 1.79. The one step process of β‐cyclodextrin methylation by CH3Cl instead of (CH3)2SO4 at mild temperature (80 °C) and pressure (1.60 MPa) with a good yield (78%), is convenient and environmentally friendly. The mixture of RM‐β‐CD obtained contained five compounds with various DS, from which the main compound with a DS equal to 1.8 was separated by column chromatography. The compounds were carefully characterized by infra‐red, NMR and mass spectrometry. CONCLUSIONS: The one‐step process to RM‐β‐CDs with CH3Cl is more economical, more efficient and less noxious than the usual method using (CH3)2SO4. Moreover, this approach avoids some poisonous residual materials and meets the demand for protecting the environment. Copyright © 2009 Society of Chemical Industry  相似文献   

8.
The behavior of heptakis(2,3‐di‐O‐methyl‐6‐O‐sulfopropyl)‐β‐cyclodextrin as inverse phase transfer catalyst in biphasic Tsuji–Trost and hydroformylation reactions has been investigated. In terms of activity, this methylated sulfopropyl ether β‐cyclodextrin is much more efficient than the randomly methylated β‐cyclodextrin, which was the most active cyclodextrin known to date. From a selectivity point of view, the intrinsic properties of the catalytic system are fully preserved in the presence of this cyclodextrin as the chemo‐ or regioselectivity was found to be identical to that observed without a mass transfer promoter in the hydroformylation reaction. The efficiency of this cyclodextrin was attributed to its high surface activity and to the absence of interactions with the catalytically active species and the water‐soluble phosphane used to dissolve the organometallic catalyst in the aqueous phase.  相似文献   

9.
Polyaniline (PANI) salts doped with hydrochloric acid were prepared by using solid‐state polymerization in the presence of β‐cyclodextrin (β‐CD) at room temperature. The fourier transform infrared (FTIR) spectra, ultraviolet‐visible absorption spectra, X‐ray diffraction patterns were used to characterize the molecular structures of these polymers. Cyclic voltammetry study and conductivity measurements were done to investigate their electrochemical behaviors. The morphology of polymers was studied by the scanning electron microscopy and transmission electron microscopy. The results showed that PANI salts prepared in the presence of β‐CD had different physicochemical characteristics compared with PANI salt prepared in the absence of β‐CD. When the molar ratio of aniline to β‐CD was 80/20, the obtained PANI salt displayed higher crystallinity, conductivity and electrochemical properties. However, these properties were opposite on condition that the molar ratio of aniline to β‐CD was 50/50. The results also revealed that the morphology of PANI salt was affected by β‐CD, especially at aniline/β‐CD molar ratio in the feed of 50/50, in which PANI salt displayed rodlike structure morphology with a diameter of near 80–100 nm. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Because of low aqueous solubility and slow dissolution rate, cantharidin has a low oral bioavailability. Our research aims to prepare the inclusion complex of cantharidin and β‐cyclodextrin (β‐CD) and accomplish characterization, in vitro and in vivo evaluation. CA‐β‐CD inclusion complex was prepared by saturated solution method. The CA was demonstrated by HPLC in vitro experiment and by GC‐MS in vivo experiment. CA‐β‐CD inclusion complex was characterized by differential scanning calorimetry (DSC), X‐ray diffractometry (XRD), and nuclear magnetic resonance (NMR). Through complexation with β‐CD, the solubility of CA in neutral aqueous solution was improved significantly. CA‐β‐CD inclusion complex also shows a significantly improved dissolution rate in comparison with free CA. Comparison of the pharmacokinetics between CA‐β‐CD inclusion complex and free CA was performed in rats. The in vivo results show that CA‐β‐CD inclusion complex has earlier tmax, higher Cmax, and higher bioavailability than free CA after oral dosing. By comparing the AUC0–t of CA and CA‐β‐CD inclusion complex, the relative bioavailability of CA‐β‐CD inclusion complex to free CA was 506.3%, which highlighted the evidence of significantly improved bioavailability of formulation of CA with β‐CD. Thus, this β‐CD‐based drug delivery system should be an effective oral dosage form to improve oral bioavailability of CA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
A new associating system has been elaborated from mixing a degradable polymer, poly(β‐malic acid‐co‐β‐ethyladamantyl malate), and a β‐cyclodextrin polymer in aqueous solution. Viscosity and dynamic light scattering measurements have been made on solutions of the single copolyester and of mixtures of both polymers. Studies on copolyesters with different percentages of hydrophobic groups (0–7.5%) show that a small proportion of the chains (less than 5% in weight) are aggregated in large structures (100 nm) which dominate the scattering intensity. The mixtures exhibit slow diffusive relaxation modes which correlate with a large viscosity enhancement at low concentration. These effects, which depend sensitively on pH, are attributed to the presence of polydisperse complexes of copolyester and β‐cyclodextrin polymer. The influence of pH, ionic strength, medium composition, and concentration were examined on the mixture of copolymers. It was found that the association properties are controlled by the net charge on the amphiphilic copolyester. © 2001 Society of Chemical Industry  相似文献   

12.
The influence of molecularly imprinted polymer‐methacrylic acid functionalized β‐cyclodextrin (MIP(MAA‐β‐CD)) morphology on the adsorption behavior studies towards benzylparaben (BzP) was explored. The effects of time, concentration, and temperature towards BzP uptake were extensively evaluated. The adsorption performance of MIP(MAA‐β‐CD) was compared with that on the molecularly imprinted polymer‐methacrylic acid (MIP(MAA)) synthesized without β‐CD. The MIP(MAA‐β‐CD) was synthesized to obtain a spherical and spongy‐porous texture with a broad pore size distribution. The MIP(MAA‐β‐CD) showed fast kinetic and the intra‐particle diffusion model demonstrated a three step (surface and pore) adsorption process. The Koble‐Corrigan isotherm was the most suitable model for data fitting, which indicated that MIP(MAA‐β‐CD) had homogeneous and heterogeneous surfaces. This finding clearly demonstrated that the large uptake and strong affinity of MIP(MAA‐β‐CD) did not only probably result from the monomer‐template interactions, but also due to the morphological MIP(MAA‐β‐CD) structure. In contrary to MIP(MAA‐β‐CD), MIP(MAA) synthesized with uniform morphology and narrow pore size distribution had lower adsorption capacities and its kinetic data fitted the pseudo‐second order diffusion model, indicating a two‐step (surface only) adsorption process. The MIP(MAA) adsorption process followed the Langmuir isotherm model referred to solely homogeneous uptake. The calculated thermodynamic parameters showed that the BzP uptake was exothermic, spontaneous, and physisorption process onto MIPs, which supported the results of kinetics and isotherm adsorption data. This study clearly revealed that the presence of β‐CD improved the morphology of synthesized MIP, and automatically enhanced the adsorption behavior of MIP. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42720.  相似文献   

13.
Serine‐ and metallo‐β‐lactamases present a threat to the clinical use of nearly all β‐lactam antibiotics, including penicillins, cephalosporins, and carbapenems. Efforts to develop metallo‐β‐lactamase (MBL) inhibitors require suitable screening platforms to allow the rapid determination of β‐lactamase activity and efficient inhibition. Unfortunately, the platforms currently available are not ideal for this purpose. Further progress in MBL inhibitor identification requires inexpensive and widely applicable assays. Herein the identification of an inexpensive and stable chromogenic substrate suitable for use in assays of clinically relevant MBLs is described. (6R,7R)‐3‐((4‐Nitrophenoxy)methyl)‐8‐oxo‐7‐(2‐phenylacetamido)‐5‐thia‐1‐azabicyclo[4.2.0]oct‐2‐ene‐2‐carboxylic acid 5,5‐dioxide (CLS405) was synthesised in a three‐step protocol. CLS405 was then characterised spectroscopically, and its stability and kinetic properties evaluated. With a Δλmax value of 100 nm between the parent and hydrolysis product, a higher analytical accuracy is possible with CLS405 than with commonly used chromogenic substrates. The use of CLS405 in assays was validated by MBL activity measurements and inhibitor screening that resulted in the identification of N‐hydroxythiazoles as new inhibitor scaffolds for MBLs. Further evaluation of the identified N‐hydroxythiazoles against a panel of clinically relevant MBLs showed that they possess inhibitory activities in the mid‐ to low‐micromolar range. The findings of this study provide both a useful tool compound for further inhibitor identification, and novel scaffolds for the design of improved MBL inhibitors with potential as antibiotics against resistant strains of bacteria.  相似文献   

14.
Fluorescent 2‐naphthol (NOH)‐containing β‐cyclodextrin (β‐CD)–epichlorohydrin (EP) copolymers were synthesized. Polymerization was confirmed through viscosity and FT‐IR spectroscopic measurements. Under certain conditions, the copolymers were water‐soluble (molar ratio of EP/β‐CD <22:1), while under other conditions water‐insoluble gels were formed (EP/β‐CD ≥ 22:1). Increase of the EP content to EP/β‐CD ≤ 39:1 increased the fluorescence intensity of the copolymer and shifted the emission maximum from 422 nm toward 352 nm (measured at pH ≥ 12). Further increases in the EP content resulted in a slight decrease in the fluorescence intensity. The fluorescence properties of our system at EP/β‐CD < 22 were sensitive to pH variation, while at EP/β‐CD ≥ 22 no pH effect was observed. These variations can be explained in terms of the exposure of the fluorophore to solvent in soluble versus insoluble polymers, as well as changes in the mode of association (host–guest complexation, trapping within the polymer network, covalent bonding, etc) of NOH with the polymers. Crystallographic studies on a single crystal grown in the absence of EP, but under basic conditions, suggest that host–guest complexation is not an important mode for NOH incorporation. Copyright © 2005 Society of Chemical Industry  相似文献   

15.
A novel cyclodextrin (CD) derivative, m‐xylenediamine‐β‐cyclodextrin (m‐XDA‐β‐CD), has been synthesized and used to graft β‐CD on membrane surface for the pervaporation separation of butanol isomers. The reaction mechanisms for the m‐XDA‐β‐CD synthesis and the membrane surface grafting are confirmed by FTIR and TGA. The as‐fabricated novel CD‐grafted polyamide‐imide (PAI) membranes show homogeneous morphology and significant improved separation performance as compared to the unmodified PAI membranes and PAI/CD mixed matrix membranes made of physical blends. The effects of chemical modification time and dope concentration on the asymmetric membrane have been studied. The optimal separation performance can be found with the CD‐grafted PAI membrane cast from a 22 wt % dope concentration, which exhibits a total butanol flux of 15 g/m2/h and a separation factor of 2.03. This newly developed membrane with surface‐immobilized CD may open new perspective for the development of next‐generation high‐performance pervaporation membranes for liquid separations. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

16.
A temperature‐sensitive hydrogel with the capability of inclusion complex formation with guest molecules was successfully grafted onto the surface of nonwoven polypropylene (nonwoven PP). This was carried out by the use of N‐isopropylacrylamide monomer and a modified cyclodextrin (acrylamidomethyl‐β‐cyclodextrin (β‐CD‐NMA)). Fourier‐transform infra red (FT‐IR) and elemental analyses confirmed the presence of poly(N‐isopropylacrylamide) (PNIPAAm) and β‐CD‐NMA components on the surface of the textile. Equilibrium swelling ratio measurements showed that the grafted hydrogel maintained its temperature‐sensitive property compared to a nongrafted hydrogel. The effect of β‐CD‐NMA and crosslink agent concentrations on the grafting yield was studied. The β‐CD‐NMA content into the PNIPPAM‐ β‐CD‐NMA grafted nonwoven PP (PNIPAAm‐β‐CD‐NMA‐PP) was estimated by FT‐IR through a new procedure. The estimated amounts of β‐CD‐NMA in PNIPAAm‐β‐CD‐NMA‐PP were determined to be 0.9, 1.9 mg g?1 for 0.019M and 0.049M concentrations of β‐CD‐NMA in monomer solution, respectively. The PNIPAAm‐β‐CD‐NMA‐PP showed a remarkable increase in absorbance affinity of 8‐anilino‐1‐naphthalenesulfonic acid ammonium salt at 20°C from 0.93 to 3.33 µmol g?1 compared to PNIPAAm‐PP. Furthermore, the results showed a temperature‐sensitive loading affinity for PNIPAAm‐β‐CD‐NMA‐PP in absorbance of guest molecules due to the presence of β‐CD‐NMA. The use of hydrophobic guest molecules such as fragrance oils and antibiotics in modified fabrics can provide new applications in textile and pharmaceutical industry. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40497.  相似文献   

17.
Hydrophobically modified chitosan containing β‐cyclodextrin (CD) units was synthesized by using tosylated β‐CD. The final product was characterized by Fourier transform infrared (FTIR) spectroscopy, elemental analysis and TGA, and rheometry. The polymer bearing β‐CD moieties was used to obtain crosslinked microparticles by spray‐drying which could then be used in a controlled release system for drugs. FTIR confirmed the formation of an amide linkage between cyclodextrin and chitosan. As fluorescence spectroscopy demonstrated, hydrophobic microenvironments were formed by chitosan bearing cyclodextrin in solution at lower concentrations than for chitosan. Rheometry and FTIR showed the crosslinking of the new polymer using genipin, a molecule of natural origin. Microspheres (MS) obtained by spray‐drying showed narrow size distribution when β‐CD was grafted onto chitosan and ξ‐potential of MS was slightly lower although it remained positive. In conclusion, β‐CD linked chitosan polymer can be considered as a very promising controlled drug delivery system for drugs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Eucalyptol (Euc) is a natural monoterpene with insecticide effects. Being highly volatile and sensitive to ambient conditions, its encapsulation would enlarge its application. Euc‐loaded conventional liposomes (CL), cyclodextrin/drug inclusion complex, and drug‐in‐cyclodextrin‐in‐liposomes (DCL) are prepared to protect Euc from degradation, reduce its evaporation, and provide its controlled release. The liposomal suspension is freeze‐dried using hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) as cryoprotectant. The liposomes are characterized before and after freeze‐drying. The effect of Euc on the fluidity of liposomal membrane is also examined. A release study of Euc from delivery systems, in powder and reconstituted forms, is performed by multiple head extraction at 60 °C after 6 months of storage at 4 °C. CL and DCL suspensions are homogeneous, show nanometric vesicles size, spherical shape, and negative surface charge before and after freeze‐drying. Moreover, HP‐β‐CD does not affect the fluidity of liposomes. CL formulations present a weak encapsulation for Euc. The loading capacity of eucalyptol in DCL is 38 times higher than that in CL formulation. In addition, freeze‐dried DCL and HP‐β‐CD/Euc inclusion complex show a higher retention of eucalyptol than CL delivery system. Both carrier systems HP‐β‐CD/Euc and Euc‐loaded DCL decrease Euc evaporation and improve its retention. Practical Applications: Eucalyptol is a natural insecticide. It is highly volatile and poorly soluble in water. To enlarge its application, its encapsulation in three delivery systems (conventional liposomes, cyclodextrin/drug inclusion complex, combined system composed of cyclodextrin inclusion complex and liposome) is studied. In this paper it is proved that cyclodextrin/eucalyptol inclusion complex and eucalyptol‐in‐cyclodextrin‐in‐liposome are effective delivery systems for encalyptol encapsulation, retention, and release.  相似文献   

19.
The enantioselective extraction of hydrophobic oxybutynin (OBN) enantiomers by hydrophilic β‐cyclodextrin (β‐CD) derivatives was studied. The efficiency of extraction depends strongly on a number of process variables such as types of organic solvents and β‐CD derivatives, concentration of selector, pH, and temperature. The experimental data were described by a reactive extraction model with a homogeneous aqueous phase reaction of R,S‐OBN with β‐CD. Important parameters of this model were determined experimentally. The physical distribution coefficients for molecular and ionic OBN were 4.96 × 10?3 and 9.52, respectively. The equilibrium constants of the complexation reactions were 1770 and 1340 L/mol for S‐ and R‐OBN, respectively. By modeling and experiment, an optimal extraction condition with pH of 5 and HP‐β‐CD concentration of 0.1 mol/L was obtained with enantioselectivity (α) of 1.26, which was close to the theoretical maximum of 1.32 and performance factor (pfi) of 0.036. The model was verified experimentally with excellent results. © 2011 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

20.
Chitosan‐graft‐β‐cyclodextrin (CS‐g‐β‐CD) copolymer was synthesized by conjugating β‐cyclodextrins to chitosan molecules through click chemistry. The copolymer structure was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). CS‐g‐β‐CD/CMC nanoparticles were prepared by a polyelectrolyte complexation process in aqueous solution between CS‐g‐β‐CD copolymer and carboxymethyl chitosan (CMC), which was used to load anticancer drug (Doxorubicin hydrochloride, DOX·HCl) with hydrophobic group. The particle size, surface charge, zeta potential, and morphology of the nanoparticles were characterized with dynamic light scattering. The drug loading efficiency and in vitro release of DOX·HCl of the nanoparticles were measured by ultraviolet spectrophotometer. The results demonstrated that the size, surface charge and drug loading efficiency of the nanoparticles could be modulated by the fabrication conditions. The drug loading efficiency of CS‐g‐β‐CD/CMC nanoparticles was improved from 52.7% to 88.1% because of the presence of β‐CD moieties with hydrophobic cavities, which can form inclusion complexes with the drug molecules. The in vitro release results showed that the CS‐g‐β‐CD/CMC nanoparticles released DOX·HCl in a controlled manner, importantly overcoming the initial burst effect. These nanoparticles possess much potential to be developed as anticancer drug delivery systems, especially those drugs with hydrophobic group. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41034.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号