首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical properties and crystal morphological structures of dynamically photocrosslinked polypropylene (PP)/ethylene‐propylene‐diene terpolymer (EPDM) blends have been studied by mechanical tests, wide‐angle X‐ray diffraction (WAXD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). Dynamically photocrosslinking of PP/EPDM blends can improve the mechanical propertiess considerably, especially the notched Izod impact strength at low temperature. Data obtained from mechanical tests show that the notched Izod impact strength of a dynamically photocrosslinked sample with 30% EPDM at ?20°C is about six times that of an uncrosslinked sample with the same EPDM component. The results from the WAXD, SEM, and DSC measurements reveal the enhanced mechanism of impact strength for the dynamically photocrosslinked PP/EPDM blends as follows: (i) the β‐type crystal structure of PP is formed and the interplanar distance of β‐type crystal increases slightly with an increase in the EPDM component; (ii) the droplet size of the EPDM phase in the photocrosslinked PP/EPDM blends is obviously reduced and the droplet number is increased with an increase in the EPDM component during the dynamical photocrosslinking process; (iii) the graft copolymer of PP‐g‐EPDM is formed at the interface between PP and EPDM components. All the above changes from the crystal morphological structures are favorable for increasing the compatibility and enhancing the toughness of PP/EPDM blends at low temperatures.  相似文献   

2.
Attempts were made to prepare dynamically crosslinked ethylene–propylene–diene monomer/polypropylene (EPDM/PP, 60/40 w/w) blends loaded with various amounts of silica as a particulate reinforcing agent. The dispersion of silica between the two phases under mixing conditions, and also extent of interaction, as the two main factors that influence the blend morphology were studied by scanning electron microscopy. Increasing the silica concentration led to the formation of large‐size EPDM aggregates shelled by a layer of PP. Dynamic mechanical thermal analysis performed on the dynamically cured silica‐loaded blend samples showed reduction in damping behavior with increasing silica content. Higher rubbery‐like characteristics under tensile load were exhibited by the silica‐filled EPDM/PP‐cured blends. However, increasing the silica level to 50 phr led to the enhancement of interface, evidenced by increases in the tensile modulus and extensibility of the blend compared with those of the unloaded sample. Addition of a silane coupling agent (Si69) into the mix improved the mechanical properties of the blend, attributed to the strengthening of interfacial adhesion between the PP matrix and silica‐filled EPDM phase. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2000–2007, 2004  相似文献   

3.
PP/EPDM热塑性弹性体结晶与熔融行为研究   总被引:1,自引:0,他引:1  
采用动态光交联法制备了PP/EPDM[聚丙烯/(乙烯/丙烯/二烯)共聚物]热塑性弹性体。运用广角X射线衍射(WAXD),偏光显微镜(POM)与差示扫描量热仪(DSC)对PP的结晶形态及结晶与熔融行为进行表征。结果表明,EPDM的加入妨碍PP形成完善的球晶,而动态光交联体系中PP的球晶更不完善;动态光交联对PP的结晶温度及熔点影响不大,结晶度低于未交联体系的。  相似文献   

4.
Dynamically vulcanized blends of polyoxymethylene (POM) and ethylene propylene diene terpolymer (EPDM) with and without compatibilizer were prepared by melt mixing in a twin screw extruder. Maleic anhydride (MAH) grafted EPDM (EPDM‐g‐MAH) has been used as a compatibilizer. Dicumyl peroxide was used for vulcanizing the elastomer phase in the blends. Mechanical, dynamical mechanical, thermal, and morphological properties of the blend systems have been investigated as a function of blend composition and compatibilizer content. The impact strength of both dynamically vulcanized blends and compatibilized/dynamically vulcanized blends increases with increase in elastomer content with decrease in tensile strength. Dynamic mechanical analysis shows decrease in tanδ values as the elastomer and compatibilizer content increased. Thermograms obtained from differential scanning calorimetric studies reveal that compatibilized blends have lower Tm values compared to dynamically vulcanized blends, which confirms strong interaction between the plastic and elastomer phase. Scanning electron microscopic observations on impact fractured surface indicate reduction in particle size of elastomer phase and its high level of dispersion in the POM matrix. In the case of compatibilized blends high degree of interaction between the component polymers has been observed. POLYM. ENG. SCI., 47:934–942, 2007. © 2007 Society of Plastics Engineers  相似文献   

5.
采用动态光交联法制备了3种不同类型的PP/三元乙丙橡胶(EPDM)热塑性弹性体,探讨了PP的结构及化学组成、动态光交联时间对PP/EPDM热塑性弹性体性能的影响。力学性能、扫描电镜、动态力学热分析、熔体流动速率等测试结果表明,PP的结构及化学组成对体系性能的影响显著,H_2P/EPDM热塑性弹性体的综合性能最佳。而动态光交联能明显提高体系的相容性,进而大幅度提高体系的力学性能。H_2P_(70)V_0的拉伸强度为17.3 MPa,缺口冲击强度为34.9 kJ/m~2,而H_2p_(70)V_(60)的拉伸强度为21.2 MPa,缺口冲击强度为66.3 kJ/m~2,拉伸强度提高20%,缺口冲击强度提高近1倍。  相似文献   

6.
The mechanical properties and morphological structures of blends based on Zn2+ neutralized low degree sulfated ethylene propylene diene monomer rubber (Zn–SEPDM) ionomer and polypropylene (PP) were studied. It was found that Zn2+ neutralized low degree sulfated EPDM ionomer and PP blends, which are new thermoplastic elastomeric materials, have better mechanical properties than those of PP/EPDM blend. Theoretical analysis of tensile data suggests that there is an increase of the extent of interaction between PP and EPDM in the presence of a low degree of Zn2+, which is also an indicator of better interfacial adhesion between PP and Zn–SEPDM than that between PP and EPDM. SEM results proved that the finer dispersed phase sizes and the shorter interparticle distances are the main reasons for the improved mechanical properties of the PP/EPDM blend. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1504–1510, 2004  相似文献   

7.
The comparison of the mechanical properties between poly(propylene)/ethylene‐propylene‐diene monomer elastomer (PP/EPDM) and poly(propylene)/maleic anhydride‐g‐ethylene‐propylene‐diene monomer [PP/MEPDM (MAH‐g‐EPDM)] showed that the latter blend has noticeably higher Izod impact strength but lower Young's modulus than the former one. Phase morphology of the two blends was examined by dynamic mechanical thermal analysis, indicating that the miscibility of PP/MEPDM was inferior to PP/EPDM. The poor miscibility of PP/MEPDM degrades the nucleation effectiveness of the elastomer on PP. The observations of the impact fracture mode of the two blends and the dispersion state of the elastomers, determined by scanning electron microscopy, showed that PP/EPDM fractured in a brittle mode, whereas PP/MEPDM in a ductile one, and that a finer dispersion of MEPDM was found in the blend PP/MEPDM. These observations indicate that the difference in the dispersion state of elastomer between PP/EPDM and PP/MEPDM results in different fracture modes, and thereby affects the toughness of the two blends. The finer dispersion of MEPDM in the blend of PP/MEPDM was attributed to the part cross‐linking of MEPDM resulting from the grafting reaction of EPDM with maleic anhydride (MAH) in the presence of dicumyl peroxide (DCP). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2486–2491, 2002  相似文献   

8.
Thermoplastic vulcanizates (TPVs) based on polypropylene (PP) with ethylene–octene copolymer (EOC) and ethylene propylene diene rubber (EPDM) have been prepared by co-agent-assisted peroxide crosslinking system. The study was pursued to explore the influence of two dissimilar polyolefin polymers having different molecular architecture on the state and mode of dispersion of the blend components and their influence on melt rheological properties. The effects of dynamic crosslinking of the PP/EOC and PP/EPDM have been compared with special reference to the concentration of crosslinking agent and ratio of blend components. Morphological analyses show that, irrespective of blend ratio, dynamic vulcanization exhibits a dispersed phase morphology with crosslinked EOC or EPDM particles in the continuous PP matrix. It was found that viscosity ratio plays a crucial role in determining the state and mode of dispersion of blend components in the uncrosslinked system. The lower viscosity and torque values of uncrosslinked and dynamically crosslinked blends of PP/EOC in the melt state indicates that they exhibit better processing characteristics when compared to corresponding PP/EPDM blends.  相似文献   

9.
The structure development, rheological behavior, viscoelastic, and mechanical properties of dynamically cured blend based on the ethylene–propylene–diene terpolymer (EPDM) and polypropylene (PP) with a ratio of 60/40 by weight were studied. The variation of two‐phase morphology was observed and compared as the level of curing agent was increased. Meanwhile, as the level of curing agent increased, viscosity as a function of shear stress always increased at a shear stress range of 2.2 × 104 to 3.4 × 105 Pa at the temperature of 200°C, yet viscosity of the blend approached each other at high shear stress. Dynamic mechanical spectra at different temperatures show that dynamic modulus (E′) of the blend exhibits two drastic transitions corresponding to glass transition temperature (Tg) of EPDM and Tg of PP, respectively. In the blends Tgs of EPDM increase and Tgs of PP almost remain unchangeable with an increase in curing agent level. Tensile strength increased, yet elongation at break decreased as the level of curing agent is increased. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 357–362, 2004  相似文献   

10.
高模量弹性体对PP结晶行为及力学性能的影响   总被引:2,自引:0,他引:2  
应用DSC和力学性能测试研究了PP/OTE、PP/EPDM共混物的结晶行为和它们的增韧作用。结果表明 ,烯烃类热塑性弹性体 (以下简称OTE)对PP的结晶性能无明显影响 ,EPDM对PP成核速率有促进作用。PP/OTE在赋予PP较好低温韧性的同时 ,使共混物的刚性得以适度兼顾 ,且易于加工。PP/OTE共混体系的综合性能优于PP/EPDM共混物  相似文献   

11.
Dynamically vulcanized PP/EPDM blends were treated by high‐intensity ultrasonic waves during extrusion. These blends were compared with unvulcanized PP/EPDM blends that were treated by ultrasound during extrusion and then dynamically vulcanized. Die pressure and power consumption were measured. The effects of different gap sizes, ratio of components, and number of ultrasonic horns were investigated. The rheological properties, morphology and mechanical properties of the blends with and without ultrasonic treatment were compared. The results obtained indicated that ultrasonic treatment induced thermo‐mechanical degradation, causing enhanced molecular transport and chemical reactions at the interfaces, thus leading to in‐situ compatibilization, which is evident by the morphological and mechanical property studies. Processing conditions were established for enhanced in‐situ compatibilization of the PP/EPDM blends that were either originally dynamically vulcanized and then ultrasonically treated or first treated and then dynamically vulcanized. Polym. Eng. Sci. 44:2019–2028, 2004. © 2004 Society of Plastics Engineers.  相似文献   

12.
Nowadays, waste EPDM (ethylene propylene diene monomer) increasingly has been causing significant environmental problems with increasing numbers of vehicles. From the perspective of the environment and economics, recycling is the best method to treat waste materials. This study investigated waste EPDM/PP (polypropylene) blends with waste EPDM. Waste EPDM powders were treated ultrasonically, which physically modifies the rubber particles to confer good mechanical properties. Also investigated were the relevance of the mass percentage of the dispersed phase, the influence of the geometry and rotation speeds of the screw used in extrusion, and the melting temperature of PP materials on the morphology and mechanical properties of the blend. The purpose of this study was to develop a valuable thermoplastic elastomer from waste EPDM. This study concentrated on determining the optimum conditions for producing a blend by extrusion, including parameters of screw geometry, screw rotational speed, and operating temperature. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2503–2507, 2003  相似文献   

13.
ABSTRACT

EPDM/PP blends were prepared by melt mixing using Brabender Plasticorder at 200°C and 100 rpm. The curative concentration was progressively increased from 1 to 3.5 phr EPDM in order to study the influence of dynamic vulcanization on the mechanical properties of the blend. The effectiveness of dynamic vulcanization was ascertained by Brabender torque Rheometry, the increase in crosslink density, and the reduction in swelling index as well. The mechanical properties were found to increase with sulfur up to 1.4 phr after which reversion occurred. Scanning electron micrographs were inspected to differentiate between the cured EPDM/PP TPEs and the uncured counterpart. The micrographs showed that the blended system contains two incompatible phases. This is evident in both the case of the dynamically cured sample where the EPDM phase remains as dispersed particles in the PP matrix, and in the case of the uncured blend where the EPDM and PP formed two continuous phases.  相似文献   

14.
对动态硫化EPDM/PP共混型热塑性弹性体耐屈挠疲劳性能的研究表明:选择合适的橡塑共混比、硫化剂用量、补强剂品种及用量、软化剂品种,使EPDM/PP共混物不仅可以获得良好的物理机械性能,而且还可明显提高耐屈挠疲劳性能.  相似文献   

15.
The miscibility of polymers is not only an important basis for selecting a proper blending method, but it is also one of the key factors in determining the morphology and properties of the blends. The miscibility between ethylene‐propylene‐diene terpolymer (EPDM) and polypropylene (PP) was explored by means of dynamic mechanical thermal analysis, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The results showed that a decrease in the PP content and an increase of the crosslinking density of EPDM in the EPDM/PP blends caused the glass‐transition temperature peaks of EPDM to shift from a lower temperature to higher one, yet there was almost no variance in the glass‐transition temperature peaks of PP and the degree of crystallinity of PP decreased. It was observed that the blends prepared with different mixing equipment, such as a single‐screw extruder and an open mill, had different mechanical properties and blends prepared with the former had better mechanical properties than those prepared with the latter. The TEM micrographs revealed that the blends were composed of two phases: a bright, light PP phase and a dark EPDM phase. As the crosslinking degree of EPDM increased, the interface between the phases of EPDM and PP was less defined and the EPDM gradually dispersed in the PP phase became a continuous phase. The results indicated that EPDM and PP were both partially miscible. The mechanical properties of the blends had a lot to do with the blend morphology and the miscibility between the blend components. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 315–322, 2002  相似文献   

16.
Thermal and morphological studies have been performed on polymer blends based on ethylene–octene copolymer (PEE)/PP and ethylene–propylene–diene copolymer (EPDM)/PP. The thermal and morphological behavior of PEE, EPDM, PEE/PP, and EPDM/PP systems were analyzed by differential scanning calorimetry (DSC) and polarizing light microscopy, respectively. It was observed that the behaviors of crystallization kinetics of PEE/PP and EPDM/PP blends were similar. It was also observed that addition up to 10–20% (w/w) of elastomers resulted in increasing of spherulite size. The heat of fusion (ΔHf) and crystallinity degree of PEE/PP and EPDM/PP systems decreased when the elastomer contents were increased. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3530–3537, 2001  相似文献   

17.
The properties and structure of silane crosslinked polypropylene (PP)/ethylene propylene diene monomer (EPDM) elastomer blends had been carried out. Fourier transform infrared spectroscopy and gel content tests were employed to evaluate the crosslinking reaction of PP/EPDM blends. Crosslinking efficiency of PP/EPDM blends was investigated using thermogravimetric analysis, differential scanning calorimeter, dynamic mechanical analysis, dynamic rheology, and tensile testing. Tanδ curves of silane crosslinked PP/EPDM blends exhibited an obvious “gel point” originated from the formation of dynamic crosslinking network. The blend corresponding to the “gel point” presented comprehensively improved mechanical properties. These results demonstrated that characteristic rheological parameters showed close correlations with key mechanical properties of silane crosslinked PP/EPDM blends. Scanning electron microscopy images illustrated that crosslinking had remarkably changed the morphologies of PP/EPDM blends. The large deformation mechanism of these blends had been suggested.  相似文献   

18.
研究了动态硫化EPDM/PP共混型热塑性弹性体的流动性。结果表明:选择合适的橡胶及塑料品种、橡塑共混比、软化剂用量及改性剂,可使物理力学性能良好的EPDM/PP共混胶获得较好的流动性。  相似文献   

19.
The effects of ultrasonic irradiation on the mechanical properties, morphology, and crystal structure of polypropylene (PP)/ethylene‐propylene‐diene terpolymer (EPDM) blends were examined. Results show that appropriate irradiation intensity can noticeably increase the toughness of the PP/EPDM blends without reducing rigidity. Scanning electron microscopic (SEM) observation shows that with ultrasonic irradiation, the morphology of a well‐dispersed EPDM phase is formed in the PP/EPDM blend. The glass transition temperatures of PP and EPDM phase approach each other as a result of ultrasonic irradiation. Differential Scanning Calorimetric (DSC) analysis indicates that the crystallinities of the PP and EPDM phases increase with ultrasonic irradiation, and β crystals of PP form in the PP/EPDM blend with ultrasonic irradiation, which is proven by wide angle X‐ray diffraction (WAXD) analysis. Polym. Eng. Sci. 44:1509–1513, 2004. © 2004 Society of Plastics Engineers.  相似文献   

20.
An ethylene–propylene–diene terpolymer (EPDM) was photocrosslinked under UV irradiation with benzil dimethyl ketal (BDK) as a photoinitiator and trimethylolpropane triacrylate (TMPTA) as a crosslinker. The efficiency of the photoinitiated crosslinking system EPDM–BDK–TMPTA, various factors affecting the crosslinking process (the photoinitiator and crosslinker and their concentrations, the irradiation time, the temperature, the atmosphere and UV‐light intensity, and the depth of the UV‐light penetration), and the mechanical properties of photocrosslinked EPDM were examined extensively through the determination of the gel contents, infrared spectra, and mechanical measurements. EPDM samples 3 mm thick were easily crosslinked with a gel content of about 90% after 30 s of UV irradiation under optimum conditions. The photoinitiating system of a suitable initiator combined with a multifunctional crosslinker such as BDK–TMPTA enhanced the efficiency of the photocrosslinking reaction, especially by increasing the initial rate of crosslinking. The gel content of photocrosslinked EPDM, which was determined by the content of diene in EPDM, the depth of the UV‐light penetration, and the light intensity, played a key role in increasing the mechanical properties of the photocrosslinked samples in this work. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1837–1845, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号