首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
罗会龙  李明 《新能源》2000,22(11):10-12
描述了固体吸附式制冷系统中吸附床内传热过程的强化方法。分析比较了两种典型结构的吸附床,并在此基础上设计了一种新型结构的吸附床。  相似文献   

2.
固体吸附式制冷系统中吸附床传热传质研究进展   总被引:4,自引:0,他引:4  
赵惠  吴静怡 《新能源》1999,21(11):28-33
总结了近20年来国内外吸附式制冷循环系统中吸附床传热传质研究的发展及现状。将吸附床传热传质数学模型分为3类进行了讨论:(1)均匀温度场模型;(2)均匀压力场模型;(3)非均匀温度场和压力场模型。以具体的吸附器结构为例,详细描述了不同数学模型的前提建模方法和适用范围,指出了吸附床传热传质数值研究的发展趋势。  相似文献   

3.
固体吸附式制冷系统中吸附床内传热过程的数值模拟   总被引:6,自引:0,他引:6  
对一简化吸附床模型中传热过程进行理论分析,对吸附床内的热传导方程和换热管内流体的能量控制方程进行离散并利用控制容积法进行模拟数值计算,在计算模型中加入随时间变化的边界条件,得到吸附床内吸附剂和换热管内流体的两种互相耦合的温度分布,为吸附床的实际优化设计提供理论依据。  相似文献   

4.
太阳能固体吸附式制冷吸附床的设计   总被引:2,自引:0,他引:2  
描述了固体吸附式制冷系统中吸附床的作用和功能,比较分析了现有太阳能固体吸附式制冷装置的吸附床。通过两种吸附床装置的具体分析,提出了合理设计太阳能吸附床装置的途径。  相似文献   

5.
吸附床的传热传质性能是提高吸附式制冷效率的关键,优化吸附床的结构能够有效提高整个吸附床的传热传质效率,减少热量损失,提高系统的制冷效率(coefficient of performance, COP)和单位质量吸附剂制冷量(specific cooling power, SCP)。本文介绍了近年来几种新型吸附床的类型,综述了吸附剂侧的固化吸附剂和涂层吸附剂,以及换热器侧的新型换热器结构。最后阐述新型吸附床的未来发展方向和研究重点。  相似文献   

6.
李秋英  魏琪 《节能技术》2006,24(6):527-530
为缩短吸附制冷周期,采用两床交替吸附/解吸结构,并采用管内走传热介质,管外填充吸附剂的吸附式制冷系统。建立了相应的数学模型。用数值方法对模型进行了求解,着重对吸附床温度场分布进行了数值模拟,并对吸附床内压力,某些点温度以及吸附量随时间的动态变化进行了模拟,得出的结果与实际情况吻合较好,说明此吸附制冷系统有较好的传热效果,为吸附床的优化设计提供了参考依据。  相似文献   

7.
太阳能固体吸附式制冷装置吸附床在加热时的能量分析   总被引:1,自引:0,他引:1  
分析了太阳能固体吸附式制冷系统中吸附床的能量转换,具体给出了吸附床在接受外界一定辐射能量条件下各种能量(如吸附床显热、吸附剂显热、制冷剂解吸热)所占比例大小,并探讨了吸附床能量分配与转化的合理利用。  相似文献   

8.
太阳能固体吸附式制冷循环的吸附床内传热传质耦合计算   总被引:4,自引:0,他引:4  
李明  王如竹 《新能源》1999,21(3):6-11
用多孔介质理论方法分析了太阳能固体吸式制冷循环的吸附床并相应地按多孔介质的质量、动量、能量传递过程建立了太阳能固体吸附式制冷循环吸附床内传热传质耦合求解的数学模型。用本文建立的方法,可对吸附式制冷循环的吸附床进行了热动力学分析与计算,并可进一步用于系统的优化设计中。  相似文献   

9.
太阳能固体吸附制冷系统的设计研究   总被引:1,自引:0,他引:1  
施锋  伊继东 《新能源》1998,20(11):5-11
本文在综合前人研究成果的基础上,分析了可为吸附式制冷系统装置供热的太阳能集热装置的类型和特性,探讨了集热装置的设计以及与固体吸附式系统的结合方式。并围绕着影响系统效率的各种因素,研究了系统各个部分的设计方法。在分析系统整体运行特性的基础上,提出了系统整体的设计方案。  相似文献   

10.
11.
《Applied Thermal Engineering》2007,27(13):2195-2199
In this paper, a solid adsorption cooling system with silica gel as the adsorbent and water as the adsorbate was experimentally studied. To reduce the manufacturing costs and simplify the construction of the adsorption chiller, a vacuum tank was designed to contain the adsorption bed and evaporator/condenser. Flat-tube type heat exchangers were used for adsorption beds in order to increase the heat transfer area and improve the heat transfer ability between the adsorbent and heat exchanger fins. Under the standard test conditions of 80 °C hot water, 30 °C cooling water, and 14 °C chilled water inlet temperatures, a cooling power of 4.3 kW and a coefficient of performance (COP) for cooling of 0.45 can be achieved. It has provided a specific cooling power (SCP) of about 176 W/(kg adsorbent). With lower hot water flow rates, a higher COP of 0.53 can be achieved.  相似文献   

12.
利用冷却塔热力过程仿真模型,结合相关实验数据,在仿真结果的基础上,深入分析了室外湿球温度、冷却水量和通风量三个参数对冷却塔换热量的影响,可为冷却水系统节能控制策略的制定和实施提供参考.  相似文献   

13.
The paper presents the numerical analysis on microchannel laminar heat transfer and fluid flow of nanofluids in order to evaluate the suitable thermal conductivity of the nanoparticles that results in superior thermal performances compared to the base fluid. The diameter ratio of the micro-tube was Di/Do = 0.3/0.5 mm with a tube length L = 100 mm in order to avoid the heat dissipation effect. The heat transfer rate was fixed to Q = 2 W. The water based Al2O3, TiO2 and Cu nanofluids were considered with various volume concentrations ϕ = 1,3 and 5% and two diameters of the particles dp = 13 nm and 36 nm. The analysis is based on a fixed Re and pumping power Π, in terms of average heat transfer coefficient and maximum temperature of the substrate. The results reveal that only the nanofluids with particles having very high thermal conductivity (λCu = 401 W/m K) are justified for using in microcooling systems. Moreover, the analysis is sensitive to both the comparison criteria (Re or Π) and heat transfer parameters (have or tmax).  相似文献   

14.
采用气热耦合数值方法研究了冷却流量对热障涂层气冷涡轮叶片冷却性能的影响,并对结果进行了对比分析。研究结果表明:热障涂层叶片的综合冷却效率随冷却流量的增加而增大,但增幅则逐渐下降。在吸力面上,附加热障涂层的效果更好。基准工况下,附加热障涂层,叶片表面温度可降低72.6 K,综合冷却效率增幅最大可达6.5%。在尾缘区域,热障涂层会阻碍热量从金属叶片表面向低温的流体传递,导致叶片表面性能下降,因此,只有配合高效的内冷技术,才能达到理想的冷却效果。  相似文献   

15.
Gas diffusion layers (GDL) are one of the important parts of the PEM fuel cell as they serve to transport the reactant gases to the catalyst layer. Porosity of this layer has a large effect on the PEM fuel cell performance. The spatial variation in porosity arises due to two effects: (1) compression of the electrode on the solid landing areas and (2) water produced at the cathode side of gas diffusion layers. Both of these factors change the porosity of gas diffusion layers and affect the fuel cell performance. To implement this performance analysis, a mathematical model which considers oxygen and hydrogen mass fraction in gas diffusion layer and the electrical current density in the catalyst layer, and the fuel cell potentials are investigated. The porosity variation in the GDL is calculated by considering the applied pressure and the amount of the water generated in the cell. The validity of the model is approved by comparing the computed results with experimental data. The obtained results show that the decrease in the average porosity causes the reduction in oxygen consumption, so that a lower electrical current density is generated. It is also shown that when the electrical current density is low, the porosity variation in gas diffusion layer has no significant influence on the level of polarization whereas at higher current density the influence is very significant. The porosity variation causes non-uniformity in the mass transport which in turn reduces the current density and a lower fuel cell performance is obtained.  相似文献   

16.
A combined cycle capable of heating and adsorption refrigeration is proposed, and the experimental prototype has been installed. The system consists of a heater, a water bath, an activated carbon–methanol adsorption bed and a ice box. This system has been tested with electric heating, and has been found that with 61 MJ heating, the 120 kg water in the bath can be heated up from 22 to 92 °C meanwhile 9 kg ice of −1.5 °C is made. The calculated COPsystem is 0.0591 and COPcycle is 0.41. After reconstruction to a real hybrid household water heater–refrigerator, when 55 MJ heating is added to 120 kg 21 °C water, and the condensing temperature is controlled at about 30 °C, the result is the 4 kg water contained inside the methanol refrigerant evaporator was iced to −2 °C, the cooling capacity of the ice and the refrigerant in the evaporator will maintain the 100 l cold box for about three days below 5 °C. The experiments show the potentials of the application of the solar powered hybrid water heater and refrigerator. Theoretical simulation has been done, which is in good agreement with experimental results. This research shows that the hybrid solar water heating and ice making is reasonable, and the combined cycle of heating and cooling is meaningful for real applications of adsorption systems.  相似文献   

17.
不同冷却水流量条件下,板管式光伏光热(PV/T)系统的性能会发生显著变化。文章通过实验测试了当冷却水流量发生变化(0~0.25 kg/s)时,板管式PV/T组件的温度、发电功率、冷却水温度,以及板管式PV/T系统热效率的变化情况。分析结果表明:当冷却水流量为0~0.25 kg/s时,PV/T组件发电功率的平均值比PV组件增加了约5%,同时,PV/T系统的热效率可达到约57%;板管式PV/T组件的发电功率随着PV/T组件温度的升高而降低,PV/T系统的热效率随着冷却水温度的升高而升高。  相似文献   

18.
A total energy system (TES) incorporating a solid oxide fuel cell (SOFC) and an exhaust gas driven absorption chiller (AC) is presented to provide power, cooling and/or heating simultaneously. The purpose for using the absorption chiller is to recover the exhaust heat from the SOFC exhaust gas for enhancing the energy utilization efficiency of the TES. A steady-state mathematical model is developed to simulate the effects of different operating conditions of SOFC, such as the fuel utilization factor and average current density, on the performance of the TES by using the MATLAB softpackage. Parametric analysis shows that both electrical efficiency and total efficiency of the TES have maximum values with variation of the fuel utilization factor; while the cooling efficiency increases, the electrical efficiency and total efficiency decrease with increase in the current density of SOFC. The simulated results could provide useful knowledge for the design and optimization of the proposed total energy system.  相似文献   

19.
A solar adsorption cooling system which can be switched between a system with heat storage and a system without heat storage was designed. In the system with heat storage, a heat storage water tank was employed as the link between the solar collector circulation and the hot water circulation for the adsorption chillers. However, the heat storage water tank was isolated in the system without heat storage, and the hot water was directly circulated between the solar collector arrays and the adsorption chillers. It was found that the inlet and outlet temperatures for the solar collector arrays and the adsorption chillers in the system without heat storage were more fluctuant than those of the system with heat storage. Also found was that the system with heat storage operated stably because of the regulating effect by the heat storage water tank. However, under otherwise similar conditions, the cooling effect of the system without heat storage was similar to that of the system with heat storage. Compared with the system with heat storage, the system without heat storage has the advantages of higher solar collecting efficiency as well as higher electrical COP.  相似文献   

20.
A more realistic theoretical simulation model for a tubular solar adsorption refrigerating system using activated carbon-methanol (AC/M) pair has been introduced. The mathematical model represents the heat and mass transfer inside the adsorption bed, the condenser, and the evaporator. The simulation technique takes into account the variations of ambient temperature and solar radiation along the day. Furthermore, the local pressure, and local thermal conductivity variations in space and time inside the tubular reactor are investigated as well. A C++ computer program is written to solve the proposed numerical model using the finite difference method. The developed program covers the operations of all the system components along the cycle time. The performance of the tubular reactor, the condenser, and the evaporator has been discussed. Time allocation chart and switching operations for the solar refrigeration system processes are illustrated as well. The case studied has a 1 m2 surface area solar flat plate collector integrated with a 20 stainless steel tubes containing the AC/M pair and each tube has a 5 cm outer diameter. In addition, the condenser pressure is set to 54.2 kpa. It has been found that, the solar coefficient of performance and the specific cooling power of the system are 0.211 and 2.326 respectively. In addition, the pressure distribution inside the adsorption bed has been found nearly uniform and varying only with time. Furthermore, the AC/M thermal conductivity is shown to be constant in both space and time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号