首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
针对光伏发电系统短期预测影响因素较多、预测精度较低、稳定度不高等问题,提出一种基于动态时间弯曲(DTW)和变分模态分解(VMD)的粒子群(PSO)优化的BP神经网络光伏发电预测方法。首先使用动态时间弯曲算法对光伏发电功率及影响因素的数据进行测算得到DTW值,再根据DTW值选择对光伏发电功率影响较大的辐射度作为主要影响因素,然后利用变分模态分解将影响因素及光伏发电功率进行分解,降低数据的波动性和非平稳性。运用粒子群优化的BP神经网络对各分量进行预测,然后将预测结果进行叠加,叠加所得结果即为最后预测结果。在Matlab中对该方法和其他神经网络进行算例验证和误差分析,结果表明采用该方法预测结果精度高,稳定性好。  相似文献   

2.
为了更加准确有效地对极地光伏发电功率做出预测,提出一种基于GA-GNNM的极地光伏发电功率预测方法.首先对采集到的气候因素数据以及光伏发电数据中缺失、异常部分进行清洗归一化处理;通过最大相关最小冗余算法(MRMR)选择最佳的气候特征组合,构建多维气候特征数据集;并将其输入到K均值聚类算法中完成不同季节天气类型聚类划分,...  相似文献   

3.
随着新能源技术的不断发展,光伏发电因具有绿色清洁、持续长久等优点得到了广泛应用,但同时其输出功率存在间歇性、随机性和突变性等特点,会对电网的稳定性带来负面影响,准确的功率预测对电网的稳定运行至关重要。近几年大数据及人工智能发展迅速,将数字孪生技术与功率预测相结合,可以得到高精度的预测结果。本文提出一种基于数字孪生的功率预测机制,建立数字孪生体实现光伏发电功率预测。该预测方法的推广应用为电网的稳定运行提供了可靠保证,有效提高了功率预测精度,具有很好的应用前景和现实的应用价值。  相似文献   

4.
针对目前光伏发电预测的预测耗时和预测精度不足等问题,提出了一种基于皮尔逊相关性分析、改进的麻雀算法(tGSSA)和深度极限学习机(DELM)的组合预测方法。该方法首先通过皮尔逊相关性分析方法对影响光伏出力的主要因素进行筛选,然后采用黄金正弦搜索策略、自适应t分布和动态选择策略来增强麻雀算法的全局搜索能力和局部寻优能力,最后利用tGSSA群智能优化算法对DELM中的输入权重和偏置进行寻优,在得到最优输入权重和偏置的情况下对光伏发电功率进行预测。以澳大利亚某光伏站一年数据按季节划分后进行预测研究,将本文模型与DELM,SSA-DELM,GA-DELM,ABC-DELM,WOA-DELM进行预测对比,结果表明,相比于其他算法改进模型和传统模型,tGSSA-DELM在预测精度、预测稳定性和工作效率中具有较大优势,具有更强的适用性。  相似文献   

5.
摘要: 为进一步提高光伏发电功率预测的准确度,从而将思维进化算法(MEA)和Elman神经网络相结合,通过MEA优化Elman神经网络权值和阈值,克服了Elman神经网络易陷入局部最优等缺陷。根据光伏发电系统的历史发电数据和气象数据,建立MEA-Elman神经网络预测模型并对其测试。结果表明,与原有光伏预测模型比较,该预测模型能够有效提高光伏预测的有效性和精确性。  相似文献   

6.
分布式光伏系统输出功率的预测是对配电网进行协调调度,进而有效消纳分布式光伏发电的关键。文章对天津某地区配电网中分布式光伏电站的功率特性进行研究,建立了基于ARIMA时间序列的分布式光伏系统输出功率预测模型。此外,还分别建立了基于ARIMA时间序列与神经网络的分布式光伏系统输出功率预测模型,以及基于ARIMA时间序列与支持向量机的分布式光伏系统输出功率预测模型,并比较了3种预测模型的预测误差。分析结果表明,与其他2种预测模型相比,基于ARIMA时间序列与支持向量机预测模型的预测误差较小,晴天、雾霾天、阴天和雨天条件下,该模型的预测误差分别为7.02%, 9.13%, 9.35%和9.48%,该模型的年预测误差为13.65%。  相似文献   

7.
为解决局部阴影下光伏阵列采用传统最大功率点跟踪(MPPT)易陷入多峰值的局部最优点问题,采用分布式构架的光伏阵列,提出了一种基于遗传粒子群(GA-PSO)的MPPT混合算法,GA-PSO算法结合了粒子群算法(PSO)的位置转移和遗传算法(GA)的全局搜索能力,使混合算法拥有比GA算法和PSO算法更好的追踪准确性和快速性。在MATLAB/Simulink平台上建立了基于GA-PSO的分布式最大功率跟踪控制(DMPPT)电路拓扑结构的光伏阵列仿真模型,仿真结果验证了所提算法的可行性和有效性,为MPPT技术改进提供一种参考方案。  相似文献   

8.
高精度光伏功率预测在光伏并网、电网安全稳定运行中起着重要作用。为获得可靠的预测功率,本文提出了一种基于因果卷积神经网络(Causal Convolutional Neural Network,CCNN)的预测模型。首先,将处理后的特征数据输入到因果卷积神经网络,在每一卷积层中,利用LSTM网络输入门对输入数据去噪,选出重要信息,而后经过1×1卷积核实现信息整合,同时降低运算复杂度,从而构建出CCNN预测模型。最后,采用巴西某发电厂真实数据对模型进行验证,并与人工神经网络(ANN)、LSTM和卷积神经网络(CNN)模型进行对比。结果表明,该方法可以很好地反映时序信息的动态特性,且预测精度优于对照模型,具有一定的实用价值。  相似文献   

9.
煤炭、石油、天然气等不可再生能源的使用,严重降低了空气质量,光伏并网由于可再生、无污染以及资源丰富的特点受到了社会各界人士的喜爱,但是光伏并网发电系统会从许多的不同层面影响电网的电能质量。本文重点分析了分布式光伏发电并网系统,对低压配电网的数学模型进行推导,并且从电路基本理论角度分析光伏配电电源对配电网电能质量产生的作用,发现配电网电压波动与光伏电源容量和短路容量密切相关。  相似文献   

10.
针对光伏发电中因多种随机因素引起的输出功率不确定性问题,文章结合思维进化算法和BP神经网络算法建立了光伏发电功率的短期预测模型,模型的输入因子为大气温度、辐照度、风速和历史输出序列。根据季节变化采用4个预测单元对预测模型进行训练和电站出力预测,并通过仿真对所提算法的有效性和准确性进行验证。结果表明,MEA-BP模型能有效降低BP网络模型的预测误差。  相似文献   

11.
准确的风速预测是风电场功率预测的基础,对大规模风电并网具有重要的价值。文章提出一种基于信息增益(IG)的正则化极限学习机(RELM)短期风速预测方法。首先采用信息增益对32维风速属性序列进行特征选择,并对其进行加权;然后将正则化系数引入极限学习机(ELM)网络,构建RELM风速预测模型;最后结合美国风能技术中心的实测数据进行仿真,与传统ELM网络、BP神经网络相比,该方法具有较高的准确性和预测精度。  相似文献   

12.
针对光伏系统发电量的影响因素,提出一种基于经验模态分解(EMD)与回声状态网络(ESNs)的组合光伏系统短期发电功率预测方法。通过对同日类型的历史发电功率数据进行EMD,得到其不同尺度的周期分量和趋势分量;滤除其体现数据差异的各个较小周期分量,针对体现数据共性的分量建立ESNs预测模型;最后,将预测值与趋势分量组合得到最终的预测结果。预测结果对比分析表明:该方法与单一回声状态网络、BP神经网络和小波神经网络预测方法相比,计算速度快,预测精度高,稳定性好。  相似文献   

13.
针对目前光伏发电功率预测方法所存在的预测精度较低和不同天气类型适应性较弱的问题,提出一种利用主成分分析(PCA)和遗传算法(GA)改进极限学习机(ELM)的光伏发电功率预测模型(PCA-GA-ELM预测模型)。该模型的计算过程:首先,基于季节因素和天气类型等气象因素对于光伏发电系统的影响,在不同季节下建立了不同的子模型,并利用灰色关联分析法选取同种天气类型下的相似日;然后,利用PCA将多个原始输入变量降维成少数彼此独立的变量;最后,利用GA对ELM的初始权值和阈值进行寻优。此外,文章利用光伏电站的实际发电功率数据对预测模型进行验证。分析结果表明,PCA-GA-ELM预测模型具有较高的预测精度和较强的泛化能力。  相似文献   

14.
利用BP神经网络法和最小二乘法,对不同地形条件下的4个测站的10 s量级和15 min量级平均风速进行短临预报实验。研究发现,最小二乘法预报误差小,满足预报误差小于35%的日数比较大。无论是10 s量级预报,还是15 min量级预报,对于风速较大的01号站和04号站,最小二乘法优于BP神经网络法;对于风速较小的02号站和03号站,两种预报方法的预报效果相近;在10 s量级和15 min量级的风速短临预报方面,算法复杂的BP神经网络法并无明显优势。因此,在选取预报方法前,应结合预报方法本身的特征,充分考虑预报方法对地形、地貌和气候特征以及预报时效的适应性,最好对几个备选方法进行预报效果比对。  相似文献   

15.
为提高风电输出功率预测精度,提出一种基于RBF-BP组合神经网络模型的短期风电功率预测方法。在考虑尾流等因素影响的基础上,对风速进行预处理。根据相关历史数据,建立RBF-BP组合神经网络短期风电功率预测模型,对风电输出功率进行预测。仿真分析结果表明,该预测方法能有效提高风电输出功率预测精度。  相似文献   

16.
由于风速具有间歇性、随机性及波动性等特点,导致大规模风电并网对电力系统的安全、稳定运行带来严重影响。文章提出一种基于最大相关最小冗余(Maximum Correlation Minimum Redundancy,MRMR)的离群鲁棒极限学习机(Outlier Robust Extreme Learning Machine,ORELM)的短期风速预测新方法。首先分析影响风速的属性特征,采用MRMR算法来衡量不同风速属性特征与风速的相关性,进而确定风速属性特征的输入维度;然后对极限学习机(Extreme Learning Machine,ELM)进行优化,构建ORELM风速预测模型。最后以美国某大型风电场实测数据为依据进行风速预测,仿真结果表明该方法具有较高的预测精度。  相似文献   

17.
基于PSO-BP神经网络的短期光伏系统发电预测   总被引:1,自引:0,他引:1  
对光伏发电影响因素进行了分析,建立了粒子群算法优化的前向神经网络光伏系统发电预测模型。该模型利用了粒子群算法来优化神经网络内部连接权值和阈值,兼具粒子群和BP神经模型的优点,具有较好的收敛速度,泛化性能与预测精度。将光伏电站发电历史数据与天气情况作为样本,运用所建立的模型进行了训练与预测。结果表明,经过粒子群优化的BP网络模型预测精度高于典型BP网络,验证了该方法的有效性。  相似文献   

18.
《可再生能源》2019,(11):1595-1602
由于太阳辐照度及其他气象会随时发生变化,导致光伏电站输出功率具有可变性和不确定性,这将会对电网的安全运行造成重大影响。文章研究了影响光伏电站输出功率的几种气象因素,提出了一种基于小波包与最小二乘支持向量机(LSSVM)的短期光伏电站输出功率预测方法。首先,利用小波包将原始光伏电站输出功率,以及太阳辐照度、环境温度、环境湿度等气象因素进行分解,得到基频信号和多层高频信号;然后,利用最小二乘支持向量机所具有的处理小样本数据和解决非线性函数的能力,将得到的基频信号和多层高频信号作为最小二乘支持向量机的输入变量;最后,将不同尺度的输出结果进行叠加、合成,得到原始光伏电站输出功率的预测值。仿真结果表明,与传统的最小二乘支持向量机预测法、BP神经网络预测法,以及EMD与LSSVM相结合的预测方法相比,文章预测方法的预测精度较高,可以有效地预测光伏电站输出功率。  相似文献   

19.
针对传统光伏电站功率预测方法精度不高的问题,提出一种基于经验模态分解(EMD)与极限学习机(ELM)组合功率预测方法。该方法中,首先利用EMD分解分辨率为15 min的功率序列,得到一组相对平稳的分量,减少不同功率影响因素间的相互影响;然后针对各分量的不同特性,考虑相应气象因素作为输入,利用ELM神经网络建立不同的预测模型,分别预测各分量值;最后对ELM预测的各分量值求和,从而得到最终预测结果。算例仿真表明,该方法比传统的预测方法具有更高的预测准确度。  相似文献   

20.
《可再生能源》2013,(7):1-5
针对光伏系统发电量的影响因素,建立具有超强泛化能力的小波神经网络短期发电量预测模型。以相同日类型条件下的光伏系统发电量、环境温度、光板温度、相对湿度的历史数据作为样本,对模型进行训练和发电量预测。通过小波神经网络模型和BP神经网络模型预测结果的对比分析表明:小波神经网络模型训练次数少,收敛速度快,预测精度高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号