首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
4,4′‐Oxydiphthalic anhydride (1) was reacted with (s)‐(+)‐valine (2) in acetic acid and the resulting imide‐acid 3 was obtained in high yield. This compound 3 was converted to diacid chloride 4 by reaction with excess amount of thionyl chloride. The polycondensation reaction of diacid chloride 4 with several aromatic diamines such as 4,4′‐sulfonyldianiline (5a), 4,4′‐diaminodiphenyl methane (5b), 4,4′‐diaminodiphenylether (5c), p‐phenylenediamine (5d), m‐phenylenediamine (5e), and 4,4′‐diaminobiphenyl (5f) was performed by two conventional methods: low temperature solution polycondensation and a short period reflux conditions. To compare conventional solution polycondensation reaction methods with microwave‐assisted polycondensation, the reactions were also carried out under microwave conditions in the presence of small amount of o‐cresol that acts as a primary microwave absorber. The reaction mixture was irradiated for 4 min with 100% of radiation power. Several new optically active poly(amide‐imide)s with inherent viscosity ranging from 0.26–0.44 dL/g were obtained with high yield. All of the above polymers were fully characterized by 1H‐NMR, FTIR, elemental analyses, and specific rotation techniques. Some structural characterizations and physical properties of these new optically active poly (amide‐imide)s are reported. POLYM. ENG. SCI. 46:558–565, 2006. © 2006 Society of Plastics Engineers  相似文献   

2.
A pyromellitic dianhydride (benzene‐1,2,4,5‐tetracarboxylic dianhydride) was reacted with L ‐isoleucine in acetic acid, and the resulting imide acid [N,N′‐(pyromellitoyl)‐bis‐L ‐isoleucine] (4) was obtained in a high yield. 4 was converted into N,N′‐(pyromellitoyl)‐bis‐L ‐isoleucine diacid chloride by a reaction with thionyl chloride. The polycondensation reaction of this diacid chloride with several aromatic diamines, including 1,4‐phenylenediamine, 4,4′‐diaminodiphenyl methane, 4,4′‐diaminodiphenylsulfone (4,4′‐sulfonyldianiline), 4,4′‐diaminodiphenylether, 2,4‐diaminotoluene, and 1,3‐phenylenediamine, was developed with two methods. The first method was polymerization under microwave irradiation, and the second method was low‐temperature solution polymerization, with trimethylsilyl chloride used as an activating agent for the diamines. The polymerization reactions proceeded quickly and produced a series of optically active poly(amide imide)s with good yields and moderate inherent viscosities of 0.17–0.25 dL/g. All of the aforementioned polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these optically active poly(amide imide)s are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 951–959, 2004  相似文献   

3.
N‐Trimellitylimido‐L ‐leucine was reacted with thionyl chloride, and N‐trimellitylimido‐L ‐leucine diacid chloride was obtained in a quantitative yield. The reaction of this diacid chloride with p‐aminobenzoic acid was performed in dry tetrahydrofuran, and bis(p‐amidobenzoic acid)‐N‐trimellitylimido‐L ‐leucine (5) was obtained as a novel optically active aromatic imide–amide diacid monomer in a high yield. The direct polycondensation reaction of the monomer imide–amide diacid 5 with 4,4′‐diaminodiphenylsulfone, 4,4′‐diaminodiphenylether, 1,4‐phenylenediamine, 1,3‐phenylenediamine, 2,4‐diaminotoluene, and benzidine (4,4′‐diaminobiphenyl) was carried out in a medium consisting of triphenyl phosphite, N‐methyl‐2‐pyrolidone, pyridine, and calcium chloride. The resulting novel poly(amide imide)s (PAIs), with inherent viscosities of 0.22–0.52 dL g?1, were obtained in high yields, were optically active, and had moderate thermal stability. All of the compounds were fully characterized with IR spectroscopy, elemental analyses, and specific rotation. Some structural characterization and physical properties of these new optically active PAIs are reported. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 35–43, 2002; DOI 10.1002/app.10181  相似文献   

4.
Epiclon [3a,4,5,7a‐tetrahydro‐7‐methyl‐5‐(tetrahydro‐2,5‐dioxo‐3‐furanyl)‐1,3‐isobenzofurandione] or [5‐(2,5‐dioxotetrahydrofurfuryl)‐3‐methyl‐3‐cyclohexyl‐1,2‐dicarboxylic acid anhydride] (1) was reacted with L ‐isoleucine (2) in acetic acid and the resulting imide acid (3) was obtained in high yield. The diacid chloride (4) was obtained from diacid derivative (3) by reaction with thionyl chloride. The polycondensation reaction of diacid chloride (4) with several aromatic diamines such as 4,4′‐sulfonyldianiline (5a), 4,4′‐diaminodiphenyl methane (5b), 4,4′‐diaminodiphenylether (5c), p‐phenylenediamine (5d), m‐phenylenediamine (5e), 2,4‐diaminotoluene (5f), and 4,4′‐diaminobiphenyl (5g) was developed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as o‐cresol. The polymerization reactions were also performed in two other different methods: low‐temperature solution polycondensation and reflux conditions. A series of optically active poly(amide imides) with inherent viscosity of 0.12–0.30 dL/g were obtained. All of the above polymers were fully characterized by IR, elemental analyses, and specific rotation techniques. Some structural characterizations and physical properties of these optically active poly(amide imides) are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2218–2229, 2004  相似文献   

5.
EPICLON [3a,4,5,7a‐Tetrahydro‐7‐methyl‐5‐(tetrahydro‐2,5‐dioxo‐3‐furanyl)‐1,3‐isobenzofurandione] or [5‐(2,5‐dioxotetrahydrofurfuryl)‐3‐methyl‐3‐cyclohexyl‐1,2‐dicarboxylic acid anhydride] ( 1 ) was reacted with L ‐phenylalanine ( 2 ) in acetic acid, and the resulting amic acid was refluxed under a Dean‐Stark system with benzene, which produced diacid ( 3 ) in high yield. Compound ( 3 ) was converted to the diacid chloride ( 4 ) by reaction with oxalyl chloride in dry carbon tetrachloride. The polycondensation reaction of this diacid chloride ( 4 ) with several aromatic diamines such as 4,4′‐sulfonyldianiline ( 5a ), 4,4′‐diaminodiphenylmethane ( 5b ), 4,4′‐diaminodiphenylether ( 5c ), 1,4‐phenylenediamine ( 5d ), 1,3‐phenylenediamine ( 5e ), 2,4‐diaminotoluene ( 5f ), and 1,5‐diaminonaphthalene ( 5g ) was developed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as N‐methylpyrrolidone ( NMP ). The polymerization reactions were also performed under two different classical heating methods: low temperature solution polycondensation in the presence of trimethylsilyl chloride, and high temperature polymerization. A series of optically active poly(amide‐imide)s with moderate yield and inherent viscosity of 0.14–0.22 dL/g were obtained. All of the above polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of this optically active poly(amide‐imide)s are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3281–3291, 2004  相似文献   

6.
Pyromellitic dianhydride (1,2,4,5‐benzenetetracarboxylic acid 1,2,4,5‐dianhydide) was reacted with L ‐valine in a mixture of acetic acid and pyridine (3:2) at room temperature, and then was refluxed at 90–100 °C, N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid was obtained in quantitative yield. The imide–acid was converted to N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid chloride by reaction with thionyl chloride. Rapid and highly efficient synthesis of a number of poly(amide–imide)s was achieved under microwave irradiation using a domestic microwave oven by polycondensation of N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid chloride with six different derivatives of 5,5‐disubstituted hydantoin compounds in the presence of a small amount of a polar organic medium that acts as a primary microwave absorber. A suitable organic medium was o‐cresol. The polycondensation proceeded rapidly, compared with conventional melt polycondensation and solution polycondensation and was almost completed within 8 min, giving a series of poly(amide–imide)s with inherent viscosities in the range 0.15–0.36 dl g?1. The resulting poly(amide–imide)s were obtained in high yield and are optically active and thermally stable. All of the above compounds were fully characterized by Fourier‐transform infrared (FT‐IR) spectroscopy, elemental analysis, inherent viscosity (ηinh) measurements, solubility testing and specific rotation measurements. The thermal properties of the poly(amide–imide)s were investigated by using thermogravimetric analysis. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
N‐Trimellitylimido‐L ‐phenylalanine was prepared from the reaction of 1,2,4‐benzenetricarboxylic anhydride with L ‐phenylalanine in N,N‐dimethylformamide solution at refluxing temperature. The direct polycondensation reaction of the monomer imide‐diacid with 4,4′‐diaminodiphenylsulfone, 4,4′‐diaminodiphenylmethane, 1,4‐phenylenediamine, 1,3‐phenylenediamine, 2,4‐diaminotoluene, 4,4′‐diaminodiphenylether and benzidine was carried out in a medium consisting of triphenyl phosphite, N‐methyl‐2‐pyrrolidone, pyridine and calcium chloride. The resulting poly(amide–imide)s, PAIs, having inherent viscosities of 0.21–0.45 dlg?1 were obtained in high yield. All of the above compounds were fully characterized by IR spectroscopy and elemental analyses. The optical rotation of all PAIs has also been measured. Some structural characterization and physical properties of these new optically active PAIs are reported. © 2001 Society of Chemical Industry  相似文献   

8.
Pyromellitic dianhydride (1,2,4,5‐benzenetetracarboxylic acid 1,2,4,5‐dianhydide) (1) was reacted with L‐phenylalanine (2) in a mixture of acetic acid and pyridine (3 : 2) at room temperature, then was refluxed at 90–100°C and N,N′‐(Pyromellitoyl)‐bis‐L ‐phenylalanine diacid (3) was obtained in quantitative yield. The imide‐acid (3) was converted to N,N′‐(Pyromellitoyl)‐bis‐L ‐phenylalanine diacid chloride (4) by reaction with thionyl chloride. Rapid and highly efficient synthesis of poly(amide‐imide)s (6a–f) was achieved under microwave irradiation by using a domestic microwave oven from the polycondensation reactions of N,N′‐(Pyromellitoyl)‐bis‐L ‐phenylalanine diacid chloride (4) with six different derivatives of 5,5‐disubstituted hydantoin compounds (5a–f) in the presence of a small amount of a polar organic medium that acts as a primary microwave absorber. Suitable organic media was o‐cresol. The polycondensation proceeded rapidly, compared with the conventional melt polycondensation and solution polycondensation, and was almost completed within 10 min, giving a series of poly(amide‐imide)s with inherent viscosities about 0.28–0.44 dL/g. The resulting poly(amide‐imide)s were obtained in high yield and are optically active and thermally stable. All of the above compounds were fully characterized by means of FTIR spectroscopy, elemental analyses, inherent viscosity (ηinh), solubility test and specific rotation. Thermal properties of the poly(amide‐imide)s were investigated using thermal gravimetric analysis (TGA). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 516–524, 2004  相似文献   

9.
Pyromellitic dianhydride (benzene‐1,2,4,5‐tetracarboxylic dianhydride) (1) was reacted with L‐phenylalanine (2) in a mixture of acetic acid and pyridine (3 : 2) and the resulting imide‐acid [N,N′‐(pyromellitoyl)‐bis‐L‐phenylalanine diacid] (4) was obtained in quantitative yield. The compound (4) was converted to the N,N′‐(pyromellitoyl)‐bis‐L‐phenylalanine diacid chloride (5) by reaction with thionyl chloride. A new facile and rapid polycondensation reaction of this diacid chloride (5) with several aromatic diols such as phenol phthalein (6a), bisphenol‐A (6b), 4,4′‐hydroquinone (6c), 1,8‐dihydroxyanthraquinone (6d), 4,4‐dihydroxy biphenyl (6e), and 2,4‐dihydroxyacetophenone (6f) was developed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as o‐cresol. The polymerization reactions proceeded rapidly and are completed within 20 min, producing a series of optically active poly(ester‐imide)s with good yield and moderate inherent viscosity of 0.10–0.26 dL/g. All of the above polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these optically active poly(ester‐imide)s are reported. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2211–2216, 2002  相似文献   

10.
A new class of optically active poly(amide‐imide‐urethane) was synthesized via two‐step reactions. In the first step, 4,4′‐methylene‐bis(4‐phenylisocyanate) (MDI) reacts with several poly(ethylene glycols) (PEGs) such as PEG‐400, PEG‐600, PEG‐2000, PEG‐4000, and PEG‐6000 to produce the soft segment parts. On the other hand, 4,4′‐(hexafluoroisopropylidene)‐N,N′‐bis(phthaloyl‐L ‐leucine‐p‐amidobenzoic acid) (2) was prepared from the reaction of 4,4′‐(hexafluoroisopropylidene)‐N,N′‐bis(phthaloyl‐L ‐leucine) diacid chloride with p‐aminobenzoic acid to produce hard segment part. The chain extension of the above soft segment with the amide‐imide 2 is the second step to give a homologue series of poly(amide‐imide‐urethanes). The resulting polymers with moderate inherent viscosity of 0.29–1.38 dL/g are optically active and thermally stable. All of the above polymers were fully characterized by IR spectroscopy, elemental analyses, and specific rotation. Some structural characterization and physical properties of this new optically active poly(amide‐imide‐urethanes) are reported. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2288–2294, 2004  相似文献   

11.
N‐Trimellitylimido‐DL and L ‐alanine ( 3 ) were prepared from the reaction of trimellitic anhydride ( 1 ) with DL and L ‐alanine ( 2 ) in N,N‐dimethyl formamide (DMF) solution at refluxing temperature. The direct polycondensation reaction of the monomers imide‐diacid ( 3 ) with 4,4′‐diaminodiphenylsulfone ( 4a ), 4,4′‐diaminodiphenylmethane ( 4b ), 1,4‐phenylenediamine ( 4c ), 1,3‐phenylenediamine ( 4d ), 2,4‐diaminotoluene ( 4e ), and 4,4′‐diaminodiphenylether ( 4f ) was carried out in a medium consisting of triphenyl phosphite, N‐methyl‐2‐pyrolidone (NMP), pyridine, and calcium chloride. The resulting poly(amide‐imide)s PAIs, with inherent viscosities 0.32–0.66 dL/g, were obtained in high yield. All of the above‐mentioned compounds were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these new optically active PAI s are reported. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1312–1318, 2001  相似文献   

12.
4,4′‐(Hexafluoroisopropylidene)‐bis‐(phthalic anhydride) (1) was reacted with L ‐leucine (2) in toluene solution at refluxing temperature in the presence of triethylamine and the resulting imide‐acid (4) was obtained in quantitative yield. The compound (4) was converted to the diacid chloride (5) by reaction with thionyl chloride. The polymerization reaction of the imide‐acid chloride (5) with 1,6‐hexamethylenediamine (6a) , benzidine (6b) , 4,4′‐diaminodiphenylmethane (6c) , 1,5‐diaminoanthraquinone (6d) , 4,4′‐sulfonyldianiline (6e) , 3,3′‐diaminobenzophenone (6f) , p‐phenylenediamine (6g) and 2,6‐diaminopyridine (6h) was carried out in chloroform/DMAc solution. The resulting poly(amide‐imide)s were obtained in high yield and are optically active and thermally stable. All of the above compounds were fully characterized by IR, elemental analyses and specific rotation. Some structural characterization and physical properties of those optically active poly(amide‐imide)s are reported. © 1999 Society of Chemical Industry  相似文献   

13.
A new facile and rapid polycondensation reaction of 4,4′‐(hexafluoroisopropylidene)‐N,N′‐bis(phthaloyl‐L ‐leucine) diacid chloride (1) with several aromatic diols such as phenol phthalein (2a), bis phenol‐A (2b), 4,4′‐hydroquinone (2c), 1,4‐dihydroxyanthraquinone (2d), 1,8‐dihydroxyanthraquinone (2e), 1,5‐dihydroxy naphthalene (2f), dihydroxy biphenyl (2g), and 2,4‐dihydroxyacetophenone (2h) was performed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as o‐cresol. The polymerization reactions proceeded rapidly, compared with the conventional solution polycondensation, and was completed within 10 min, producing a series of optically active poly(ester‐imide)s with quantitative yield and high inherent viscosity of 0.50–1.12 dL/g. All of the above polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of this optically active poly(ester‐imide)s are reported. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 3003–3009, 2000  相似文献   

14.
A new diimide–diacid chloride (3) containing a noncoplanar 2,2′‐dimethyl‐4,4′‐biphenylene unit was synthesized by treating 2,2′‐dimethyl‐4,4′‐diamino‐biphenylene with trimellitic anhydride followed by refluxing with thionyl chloride. Various new poly(ester‐imide)s were prepared from 3 with different bisphenols by solution polycondensation in nitrobenzene using pyridine as hydrogen chloride quencher at 170°C. Inherent viscosities of the poly(ester‐imide)s were found to range between 0.31 and 0.35 dL g?1. All of the poly(ester‐imide)s, except the one containing pendent adamantyl group 5e, exhibited excellent solubility in the following solvents: N,N‐dimethylformamide, tetrahydrofuran, tetrachloroethane, dimethyl sulfoxide, N,N‐dimethylacetamide, N‐methyl‐2‐pyrrolidinone, m‐cresol, o‐chlorophenol, and chloroform. The polymers showed glass‐transition temperatures between 166 and 226°C. The 10% weight loss temperatures of the poly(ester‐imide)s, measured by TGA, were found to be in the range between 415 and 456°C in nitrogen. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2486–2493, 2004  相似文献   

15.
A new class of optically active poly(amide imide)s were synthesized via direct polycondensation reaction of diisocyanates with a chiral diacid monomer. The step‐growth polymerization reactions of monomer bis(p‐amido benzoic acid)‐N‐trimellitylimido‐L‐leucine (BPABTL) (5) as a diacid monomer with 4,4′‐methylene bis(4‐phenylisocyanate) (MDI) (6) was performed under microwave irradiation, solution polymerization under gradual heating and reflux condition in the presence of pyridine (Py), dibuthyltin dilurate (DBTDL), and triethylamine (TEA) as a catalyst and without a catalyst, respectively. The optimized polymerization conditions according to solvent and catalyst for each method were performed with tolylene‐2,4‐diisocyanate (TDI) (7), hexamethylene diisocyanate (HDI) (8), and isophorone diisocyanate (IPDI) (9) to produce optically active poly(amide imide)s by the diisocyanate route. The resulting polymers have inherent viscosities in the range of 0.09–1.10 dL/g. These polymers are optically active, thermally stable, and soluble in amide type solvents. All of the above polymers were fully characterized by IR spectroscopy, 1H NMR spectroscopy, elemental analyses, specific rotation, and thermal analyses methods. Some structural characterization and physical properties of this new optically active poly(amide imide)s are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1647–1659, 2004  相似文献   

16.
A new simple and rapid polycondensation reaction of 4,4′‐carbonyl‐bis(phthaloyl‐L ‐alanine)diacid chloride [N,N ′‐(4,4′‐carbonyldiphthaloyl)]bisalanine diacid chloride with several diphenols, such as bisphenol‐A, phenolphthalein, 1,8‐dihydroxyanthraquinone, 4,4′‐dihydroxybiphenyl, 1,5‐dihydroxynaphthalene and hydroquinone, in the presence of a small amount of a polar organic medium such as o‐cresol was performed using a domestic microwave oven. The polycondensation reaction proceeded rapidly and was almost complete within 12 min to give a series of poly(ester‐imide)s with inherent viscosities of about 0.35–0.58 dl g−1. The resulting poly(ester‐imide)s were obtained in high yield and are optically active and thermally stable. All the above compounds have been fully characterized by IR spectroscopy, elemental analysis, inherent viscosity (ηinh), solubility test and specific rotation. Thermal properties of the poly(ester‐imide)s have been investigated using thermal gravimetric analysis (TGA). © 2000 Society of Chemical Industry  相似文献   

17.
Rapid and highly efficient synthesis of novel poly(amide‐imide)s (PAIs) were achieved under microwave irradiation by using a domestic microwave oven from the polycondensation reactions of 4,4′‐carbonyl‐bis(phthaloyl‐L ‐alanine) diacid chloride [N,N′‐(4,4′‐carbonyldiphthaloyl)] bisalanine diacid chloride (1) with six different derivatives of tetrahydropyrimidinone and tetrahydro‐2‐thioxopyrimidine compounds (2a–2f) in the presence of a small amount of a nonpolar organic medium that acts as a primary microwave absorber. Suitable organic media was o‐cresol. The polycondensation proceeded rapidly and was almost completed within 10 min, giving a series of PAIs with inherent viscosities of about 0.25–0.45 dL/g. The resulting PAIs were obtained in high yield and are optically active and thermally stable. All of the above compounds were fully characterized by means of Fourier transform infrared spectroscopy, elemental analyses, inherent viscosity (ηinh), solubility test, and specific rotation. Thermal properties of the PAIs were investigated using thermogravimetric analysis. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2416–2421, 2001  相似文献   

18.
A new diimide–diacid monomer, N,N′‐bis(4‐carboxyphenyl)‐4,4′‐oxydiphthalimide (I), was prepared by azeotropic condensation of 4,4′‐oxydiphthalic anhydride (ODPA) and p‐aminobenzoic acid (p‐ABA) at a 1:2 molar ratio in a polar solvent mixed with toluene. A series of poly(amide–imide)s (PAI, IIIa–m) was synthesized from the diimide–diacid I (or I′, diacid chloride of I) and various aromatic diamines by direct polycondensation (or low temperature polycondensation) using triphenyl phosphite and pyridine as condensing agents. It was found that only IIIk–m having a meta‐structure at two terminals of the diamine could afford good quality, creasable films by solution‐casting; other PAIs III using diamine with para‐linkage at terminals were insoluble and crystalline; though IIIg–i contained the soluble group of the diamine moieties, their solvent‐cast films were brittle. In order to improve their to solubility and film quality, copoly(amide–imide)s (Co‐PAIs) based on I and mixtures of p‐ABA and aromatic diamines were synthesized. When on equimolar of p‐ABA (m = 1) was mixed, most of Co‐PAIs IV had improved solubility and high inherent viscosities in the range 0.9–1.5 dl g?1; however, their films were still brittle. With m = 3, series V was obtained, and all members exhibited high toughness. The solubility, film‐forming ability, crystallinity, and thermal properties of the resultant poly(amide–imide)s were investigated. © 2002 Society of Chemical Industry  相似文献   

19.
N‐Trimellitylimido‐L ‐isoleucine (3) was prepared from the reaction of trimellitic anhydride with L ‐isoleucine [L ‐2‐amino‐3‐methylvalerianic acid or (2S,3S)‐2‐amino‐3‐methyl‐n‐valerinic acid] in an N,N‐dimethylformamide solution at the refluxing temperature. The direct polycondensation reaction of the monomer imide diacid (3) with 1,4‐phenylenediamine, 4,4′‐diaminodiphenylmethane, 4,4′‐diaminodiphenylsulfone, diaminodiphenylether, 1,5‐naphthalendiamine, 2,4‐diaminotoluene, and 1,3‐phenylenediamine was performed in a medium consisting of triphenyl phosphite, N‐methyl‐2‐pyrolidone (NMP), pyridine, and calcium chloride. The polycondensation was performed under two different conditions: in one method, the reaction mixture was heated in an NMP solution at 60, 90, and then 130°C for different periods of time, and in the other method, the reaction mixture was refluxed only for 1 min in the same solvent. The resulting poly(amide imide)s (PAIs), with inherent viscosities of 0.21–0.37 dL/g, were obtained in high yields. All of these compounds were fully characterized by IR spectra, elemental analyses, and specific rotation measurements. Some structural characterizations and physical properties of these new optically active PAIs were examined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 116–122, 2003  相似文献   

20.
Several new optically active poly(amide‐imide)s have been synthesized by solution polycondensation of readily available aromatic diamines with diacid chloride containing ether‐imide and L ‐methionine moieties. Three polycondensation techniques were used: low temperature solution polycondensation, short period reflux conditions, and microwave‐assisted polycondensation. In all cases, the reactions were carried out using equimolecular amounts of the two monomers, in polar aprotic solvents. The obtained compounds were characterized by elemental analysis, solubility tests, FTIR, and 1H NMR spectrometry. Thermal stability of the polymer was studied by thermogravimetric analysis. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1038–1044, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号