首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluoroalkyl end‐capped homo‐ and co‐ oligomers containing silsesquioxane segments were prepared by the reactions of fluoroalkanoyl peroxides with the corresponding methacrylate monomer‐bearing silsesquioxane unit (Si‐MMA) and comonomers such as N,N‐dimethylacrylamide (DMAA) and acrylic acid (ACA). These new fluorinated Si‐MMA oligomers were easily soluble in various organic solvents and were able to reduce the surface tension of m‐xylene effectively. The modified poly(methyl methacrylate) [PMMA] and glass surface treated with fluorinated Si‐MMA homo‐oligomers exhibited a strong oleophobicity, although these fluorinated oligomers possess high oleophilic silsesquioxane segments. In contrast, the modified PMMA surface treated with fluorinated Si‐MMA–DMAA cooligomers exhibited a good hydrophilicity with a strong oleophobicity. In a series of fluorinated Si‐MMA oligomers, fluorinated Si‐MMA homo‐oligomers had a relatively high thermal stability. Therefore, these fluoroalkyl end‐capped Si‐MMA oligomers are suggested to have high potential for new functional materials through their unique properties such as a high solubility and surface active properties. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3486–3493, 2002  相似文献   

2.
A variety of fluoroalkyl end‐capped 3‐[N‐(3‐acrylamido)propyl‐N,N‐dimethylammonio]propanesulfonate polymers [RF–(APDAPS)n–RF] were prepared by the reactions of fluoroalkanoyl peroxides with the corresponding monomer under very mild conditions. Similarly, fluoroalkyl end‐capped 2‐vinylpyridinio propane sulfonate polymer was obtained by the use of fluoroalkanoyl peroxide. These fluoroalkyl end‐capped sulfobetaine polymers exhibited a good solubility in water; however, these polymers have a poor solubility in other solvents. In particular, RF–(APDAPS)n–RF polymers caused gelation in methanol, although RF–(VPPA)n–RF polymer showed no gelation in methanol. RF–(APDAPS)n–RF polymers were found to form the self‐assembled molecular aggregates with the aggregations of the end‐capped fluoroalkyl segments and the ionic interactions between sulfobetaine segments in aqueous solutions. On the other hand, it was suggested that RF–2‐vinylpyridinio propane sulfonate (VPPS)n–RF polymer is not likely to form the self‐assemblies in aqueous solutions because of the steric hindrance of pyridiniopropyl betaine units in polymer. We also studied the surfactant properties of RF–(APDAPS)n–RF and RF–(VPPS)n–RF polymers compared with those of other fluoroalkyl end‐capped betaine‐type polymers such as 2‐acrylamido‐2‐methylpropanesulfonic acid polymers and 2‐(3‐acrylamidopropyldimethylammonio) ethanoate polymers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1144–1153, 2004  相似文献   

3.
New fluoroalkyl end‐capped oligomers containing pendant phosphoric acid groups wereprepared by the reactions of the corresponding monomer with fluoroalkanoyl peroxides. It was demonstrated that not only strong aggregations of fluoroalkyl segments but also hydrogen bonding could interact synergistically to form the highly viscoelastic fluids (gel‐like fluids) in aqueous solutions of these new fluoroalkyl end‐capped oligomers containing pendant phosphoric acid groups. Furthermore, these oligomers were able to reduce the surface tension of water effectively to exhibit a clear breakpoint resembling a CMC, and the modified stainless‐steel surface treated with these oligomers was shown to possess an excellent property imparted by fluorine. More interestingly, these oligomers were found to be potent and selective inhibitors against HIV‐1 replication in vitro. New fluoroalkyl end‐capped phosphonic acid and phosphonate oligomers were also prepared by the reactions of the corresponding phosphonic acid and phosphonate monomers, respectively, by the use of fluoroalkanoyl peroxides. These new fluoroalkyl end‐capped phosphonic acid and phosphonate oligomers were found to have a higher solubility in not only water but also in common organic solvents than that of the corresponding fluorinated oligomers containing pendant phosphoric acid groups, and these new oligomers were able to reduce the surface tension of these solvents quite effectively. Thus, these oligomers are expected to develop as new fluorinated oligosurfactants. Moreover, the modified poly(methyl methacrylate) surface treated with these phosphonate oligomers was clarified to exhibit a good oil‐repellency imparted by fluorine. In addition, fluoroalkyl end‐capped phosphonate homo‐ and cooligomers were found to form monomolecular films at the air–water interface. Therefore, these fluorinated oligomers are suggested to have high potential for new functional materials through not only their excellent properties imparted by both fluorine and phosphorus, but also through their biological properties. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 228–245, 2001  相似文献   

4.
Fluoroalkyl end‐capped cooligomers containing polydimethylsiloxane and polyoxyethylene segments were prepared under very mild conditions by the cooligomerizations of fluoroalkanoyl peroxides with methacrylate monomers containing the corresponding segments and comonomers such as dimethylacrylamide and acryloylmorpholine. These obtained fluorinated cooligomers exhibited amphipathic characteristics and became soluble in water and common organic solvents. In particular interest, fluoroalkyl end‐capped cooligomers containing polyoxyethylene units were soluble not only in poly(methylphenylsiloxane) (silicone oil) but also in water, including common organic solvents except for hexane. Additionally, these fluorinated cooligomers were able to reduce the surface tension of water and m‐xylene quite effectively, to around 15 and 20 mN/m levels, respectively. In these fluorinated cooligomers, fluoroalkyl end‐capped acryloylmorpholine cooligomers containing polyoxyethylene segments were applicable as a novel emulsifying agent against water and silicone oil. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1467–1476, 2005  相似文献   

5.
Fluoroalkyl end‐capped N‐(1,1‐dimethyl‐3‐oxobutyl)acrylamide (DOBAA) copolymers containing triol segments were prepared by the reactions of fluoroalkanoyl peroxide with the corresponding monomer and N‐tris(hydroxymethyl)methylacrylamide (NAT). These obtained fluorinated copolymers [RF‐(DOBAA)x‐(NAT)y‐RF] were found to cause gelation in water, dimethyl sulfoxide, and N,N‐dimethylformamide under the non‐crosslinked conditions, although the corresponding nonfluorinated DOBAA–NAT copolymer [‐(DOBAA)x‐(NAT)y‐] could cause no gelation in these solvents. This gelation is governed by the synergistic interaction of strong aggregations of end‐capped fluoroalkyl segments and intermolecular hydrogen bonding between triol segments. We also studied the uptake and release of a variety of hydrophilic compounds such as methylene blue, methyl orange, 4‐hydroxyazobenzene‐4′‐sulfonic acid sodium salt, 2,4‐dihydroxyazobenzene‐4′‐sulfonic acid sodium salt, acriflavine hydrochloride, acridine hydrochloride, lucigenin, and fluorescein by this fluorinated copolymer gel and fluoroalkyl end‐capped NAT homopolymer gel [RF‐(NAT)n‐RF] for comparison. It was demonstrated that the uptake and release ratios of these hydrophilic compounds by RF‐(DOBAA)x‐(NAT)y‐RF gel become generally lower than those of RF‐(NAT)n‐RF gel. Interestingly, RF‐(DOBAA)x‐(NAT)y‐RF gel has no releasing power toward methylene blue, acridine hydrochloride, lucigenin, and fluorescein, although RF‐(NAT)n‐RF gel has a good releasing power toward these compounds. Additionally, RF‐(DOBAA)x‐(NAT)y‐RF gel was applied to the controlled release of anticancer drugs such as methotrexate (MTX), and the releasing ratios of MTX became higher with increasing pH values (from pH 4.3 to 9.1). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88:3212–3217, 2003  相似文献   

6.
Fluoroalkyl end‐capped copolymers containing glucosyl segments were prepared by the copolymerizations of fluoroalkanoyl peroxides with 2‐glucosyoxyethyl methacrylate (GEMA) and comonomers such as acrylic acid (ACA) and methacrylate monomer‐containing poly(oxyethylene) units (PME). Under the non‐cross‐linked conditions, fluoroalkyl end‐capped GEMA–ACA and GEMA–PME copolymers were found to cause a gelation in dimethyl sulfoxide (DMSO), where the aggregations of end‐capped fluoroalkyl segments and the hydrogen‐bonding interaction between hydroxyl segments are involved in establishing a physical gel network, although the corresponding nonfluorinated GEMA copolymers could cause no gelation in DMSO. More interestingly, it was demonstrated that these fluorinated polymeric gelling electrolytes containing lithium salts exhibit a considerably high ionic conductivity of 10?3 S/cm level at room temperature. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2833–2838, 2002  相似文献   

7.
Novel fluoroalky end‐capped oligomers/titanium dioxide nanocomposites were prepared by the hydrolysis of titanium isopropoxide in the presence of fluoroalkyl end‐capped N‐(1,1‐dimethyl‐3‐oxobutyl)acrylamide oligomer [RF‐(DOBAA)n‐RF], fluoroalkyl end‐capped N,N‐dimethylacrylamide oligomer [RF‐(DMAA)n‐RF], and fluoroalkyl end‐capped acrylic acid oligomer [RF‐(ACA)n‐RF] in tetrahydrofuran under mild conditions. In these fluorinated oligomers, RF‐(ACA)n‐RF oligomer is more effective for the preparation of the corresponding oligomers/titanium dioxide nanocomposites, and this oligomer can afford the expected fluorinated titanium dioxide nanocomposites in higher isolated yields. In addition, RF‐(ACA)n‐RF/titanium dioxide composites are nanometer size‐controlled very fine nanoparticles (14–48 nm), and exhibited a good dispersibility not only in water but also in traditional organic solvents. Fluoroalkyl end‐capped oligomers/titanium dioxide nanocomposites were also applied to the surface modification of the common organic polymers such as poly(methyl methacrylate) to exhibit a good oleophobic and hydrophilic characteristics on the surface. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers.  相似文献   

8.
Fluoroalkyl end‐capped 2‐methacryloxyethanesulfonic acid homo‐oligomer [RF–(MES)n–RF] and 2‐methacryloxyethanesulfonic acid–N,N‐dimethylacrylamide co‐oligomers [RF–(MES)x–(DMAA)y–RF] reacted with tetraethoxysilane (TEOS) under acidic conditions to afford RF–(MES)n–RF homo‐oligomer–SiO2 polymer hybrid and RF–(MES)x–(DMAA)y–RF co‐oligomer–SiO2 polymer hybrid, respectively. Thermogravimetric–mass spectra showed that the thermal stability of RF–(MES)n–RF homo‐oligomer–SiO2 polymer hybrid was superior to that of traditionally well‐known perfluorinated ion exchange polymers such as Nafion 112 (TR). The sol solutions of the fluorinated co‐oligomer–SiO2 polymer hybrid were applied to the surface modification of glass to exhibit not only a strong oleophobicity imparted by fluorine but also a good hydrophilicity on the glass surface. On the other hand, RF–(MES)x–(DMAA)y–RF co‐oligomer reacted with TEOS in the presence of a variety of silica nanoparticles (mean diameters: 11–95 nm) under alkaline conditions to afford fluoroalkyl end‐capped oligomers–silica nanoparticles (mean diameters: 32–173 nm) with a good dispersibility and stability in methanol. Similarly, a variety of fluorinated oligomers containing sulfo groups–silica nanoparticles were prepared by the homo‐ and co‐oligomerizations of fluoroalkanoyl peroxides with 2‐methacryloxyethane sulfonic acid (MES) and comonomers such as N,N‐dimethylacrylamide (DMAA) and acryloylmorpholine (ACMO) in the presence of silica nanoparticles. Interestingly, these isolated fluorinated particle powders were found to afford nanometer size‐controlled colloidal particles with a good redispersibility and stability in aqueous and organic media such as methanol. These fluorinated nanoparticles containing sulfo groups were also applied to an excellent heterogeneous catalyst for Bronsted acid‐catalyzed transformations. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 110–117, 2007  相似文献   

9.
Self‐assembled molecular aggregates of fluoroalkyl end‐capped N‐(1,1‐dimethyl‐3‐oxobutyl)‐ and N,N‐dimethyl‐acrylamide oligomers in methanol were found to interact with phthalocyanines as guest molecules to exhibit good solubility. On the other hand, the corresponding nonfluorinated oligomers were not effective in solubilizing phthalocyanines under similar conditions. In these oligomers, fluorinated N‐(1,1‐dimethyl‐3‐oxobutyl)acrylamide oligomers were more effective in solubilizing phthalocyanines in methanol. Self‐assemblies formed by fluorinated oligomer‐phthalocyanine complexes are applied to the surface modifications of polystyrene (PS), and the modified PS surface exhibited not only a strong oleophobicity imparted by fluorine but also good hydrophilicity. Thus, these fluorinated molecular aggregate‐phthalocyanine systems are suggested to have high potential for new fluorinated functional materials through their excellent properties imparted by fluorine and phthalocyanines. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 521–525, 2004  相似文献   

10.
This work describes a strategy of assembling horizontally oriented Ag nanoplates (AgNPTs) with PSS‐Ag as the precursor of silver by the layer‐by‐layer (LbL) technique on planar substrates. These AgNPTs have a lateral dimension of 20–80 nm and a thickness of 9–12 nm. A corresponding formation mechanism of these AgNPTs is discussed considering the orientation of the polyelectrolytes molecules, as well as their confinement effect on the diffusion of Ag nanoparticles. The exposed horizontal surfaces of the AgNPTs correspond to low free energy; they show an active antimicrobial activity. No Staphylococcus aureus colonies appear on the nutrient agar medium inoculated and incubated with S. aureus solutions treated by LbL films containing AgNPTs. The horizontally oriented AgNPTs by the described strategy in this work not only provides a novel method for controlled assembly of AgNPTs, but also provides insight in the antimicrobial behavior of nanoplate surfaces with low free energy. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42070.  相似文献   

11.
BACKGROUND: The aim of the present work was to prepare novel fluoroalkyl end‐capped oligomer/zinc oxide nanocomposites by the use of fluoroalkyl end‐capped oligomers as key intermediates. In addition, it was intended to clarify the unique properties of these fluorinated nanocomposites. RESULTS: A variety of fluoroalkyl end‐capped oligomer/zinc oxide nanocomposites were prepared by the interaction of the corresponding oligomers with zinc oxide particles, which were obtained by the reaction of zinc acetate dihydrate with sodium hydroxide in ethanol solution at room temperature. In contrast, fluoroalkyl end‐capped 2‐methacryolyoxyethanesulfonic acid oligomer was found to afford the corresponding fluorinated amorphous zinc oxide composites under similar conditions. CONCLUSION: These fluorinated zinc oxide composites thus obtained are nanometer size‐controlled very fine particles, and they exhibit a good dispersibility and stability in water and traditional organic media. These fluorinated nanocomposites were also applied for the surface modification of poly(methyl methacrylate) (PMMA) films, which gave not only a good surface‐active property imparted by fluorine but also unique characteristics related to the presence of zinc oxide nanoparticles on the modified PMMA film surface. Copyright © 2008 Society of Chemical Industry  相似文献   

12.
Chitosan‐graft‐β‐cyclodextrin (CS‐g‐β‐CD) copolymer was synthesized by conjugating β‐cyclodextrins to chitosan molecules through click chemistry. The copolymer structure was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). CS‐g‐β‐CD/CMC nanoparticles were prepared by a polyelectrolyte complexation process in aqueous solution between CS‐g‐β‐CD copolymer and carboxymethyl chitosan (CMC), which was used to load anticancer drug (Doxorubicin hydrochloride, DOX·HCl) with hydrophobic group. The particle size, surface charge, zeta potential, and morphology of the nanoparticles were characterized with dynamic light scattering. The drug loading efficiency and in vitro release of DOX·HCl of the nanoparticles were measured by ultraviolet spectrophotometer. The results demonstrated that the size, surface charge and drug loading efficiency of the nanoparticles could be modulated by the fabrication conditions. The drug loading efficiency of CS‐g‐β‐CD/CMC nanoparticles was improved from 52.7% to 88.1% because of the presence of β‐CD moieties with hydrophobic cavities, which can form inclusion complexes with the drug molecules. The in vitro release results showed that the CS‐g‐β‐CD/CMC nanoparticles released DOX·HCl in a controlled manner, importantly overcoming the initial burst effect. These nanoparticles possess much potential to be developed as anticancer drug delivery systems, especially those drugs with hydrophobic group. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41034.  相似文献   

13.
Hydrophobically modified water‐soluble polymers have been prepared by copolymerization of 2‐acrylamido‐2‐methylpropane sulfonic acid (AMPS) and isodecyl methacrylate (iDMA) in N,N‐dimethylformamide under nitrogen atmosphere, varying the composition feed. Fluorescence spectroscopy was used to further confirm the copolymers self‐aggregate in water. Critical concentration of the self‐aggregate formation (CAC) decreased by increasing the molar fraction of iDMA in the AMPSco copolymers and varied between 1.20 and 0.04 g/L depending on the degree of hydrophobic modification. Hence, copolymer composition and charge density allowed tuning the pseudomicellar characteristics of these new amphiphilic copolymers. The addition of a salt or a low‐molecular‐weight surfactant was studied. Binding of CTAB to the AMPSco copolymers leads to a high decrease of CAC, i.e., 0.006 g/L. Effect of the composition in the viscosimetric behavior of the hydrophobically modified copolymers AMPSco was investigated. The removal of single metal ions, Cu2+, and m‐cresol from aqueous solutions by ultrafiltration with the help of the copolymers was investigated. Equilibrium dialysis experiments demonstrate that the formation of hydrophobic microdomains can be used to control the sequestration of foulants, and thus these novel copolymers have potential application as polymeric surfactants in micellar‐enhanced ultrafiltration processes for water purification. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
A series of novel surfactants containing multianionic and nonionic hydrophilic moieties were prepared by reacting fumaric acid with polyoxyethylenated stearyl ether in the presence of a peroxy‐type free radical initiator to form a carboxylic‐acid‐group‐containing addition product. The structure of these surfactants was confirmed by infrared, nuclear magnetic resonance, and elemental analysis. These surfactants exhibit excellent functional properties of self‐sequestering. This means that besides good surfactant properties, including surface tension, foaming, and wetting, they possess autonomous sequestering ability without any help of additional sequestering agent. When used in cotton bleaching procedures, these surfactants increase the penetration of the fibers of gray fabrics and increase the whiteness of bleached cotton. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3559–3564, 2006  相似文献   

15.
Novel tri‐armed star polystyrene‐block‐poly(N‐isopropylacrylamide) block copolymers with trimesic acid as central molecules were synthesized by successive two‐step atom transfer radical polymerization, and confirmed by Fourier‐transform infrared spectra, 1H nuclear magnetic resonance, and laser light scattering gel chromatography system. The copolymers could self‐assemble into spherical core‐shell micelles in aqueous media independent on drug loading. Physicochemical properties of the blank and drug‐loaded micelles were examined by surface tension, fluorescence spectroscopy, UV‐vis, transmission electron microscope, and dynamic light scattering measurements. The copolymer micelles exhibited thermo‐triggered phase transition, with low critical solution temperature of 33.7 and 34.6°C, varying with copolymer compositions. The critical aggregate concentrations were 11.62 and 47.61 mg L?1, and hydrodynamic diameters from 200 to 220 nm. Water‐insoluble 10‐hydroxycamptothecine was encapsulated into the micelle aggregates to investigate the change in the resulting physicochemical parameters, thermo‐triggered in vitro drug release, and the applicability as drug targeting release carriers. MTT assays were carried out to uncover cytotoxicity of the newly developed micelle‐based drug formulations. © 2014 American Institute of Chemical Engineers AIChE J, 61: 35–45, 2015  相似文献   

16.
In an effort to develop a more versatile creeping biocide that is capable of self‐spreading and self‐decontaminating of pathogenic bacteria, we report the development of two new homologous series of hybrid PDMS molecules. These oligomers were synthesized with terminal quaternary ammonium functionalities bearing variable length oxyethylene moieties. It is shown that the ionic interaction of the ammonium groups with the surface onto which it spreads can be tempered by the oxyethylene segments through close association of the polar chains with the cationic centers within the hydrophobic PDMS environment, thereby promoting self‐spreading of the molecule. Once the compounds spread to a humid environment, the oxyethylene chains “blossom” and subsequently expose the biocidal centers, at which point, function as broad spectrum versatile antimicrobials. While biological evaluation showed antimicrobial activity against both Gram‐positive and Gram‐negative bacteria for all samples, one series was found to be much more effective due to lower steric hindrance surrounding the biocidal cationic termini. However, this increased exposure of the cationic center also altered the physical properties of the compounds except those isolated as a waxy solid. Self‐spreading abilities with increasing oxyethylene chain length correlating to a decreasing spread rate. The decontaminating ability of the two most active compounds was demonstrated by allowing samples to spread to pools of water contaminated with S. aureus, yielding log reductions as high as 5.7 in less than two hours without external influences. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
A soluble polyimide was synthesized from 2,2′‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]propane dianhydride (BPADA) and 3,3′‐dimethyl‐4,4′‐diaminodiphenylmethane (DMMDA) by a two‐step method, and it had good solubility both in strong bipolar solvents and in common low‐boiling‐point solvents. The BPADA–DMMDA polyimide was dissolved in chloroform (CHCl3) and cast onto a glass substrate in a humid atmosphere. The BPADA–DMMDA/CHCl3 solution easily formed honeycomb films. Some affecting factors, such as the polymer solution concentration, atmospheric humidity, and solvent volatility, were tested. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
An amphiphilic copolymer of acrylic acid (AA) and 2,2,2‐trifluoroethyl methacrylate (TFEMA) was synthesized by reversible addition‐fragmentation transfer (RAFT) copolymerization, using a feed method for adding TFEMA. The kinetics of the RAFT copolymerization agreed well with those characteristic of a first‐order reaction and the molecular weight of copolymers increased with the conversion increasing, both demonstrating that it proceeded in a controlled polymerization manner. Optimal copolymerization was achieved when the reaction was conducted at 70°C, using a molar ratio of TFEMA : AA : RAFT agent : initiator of 400 : 400 : 4 : 1. Analysis of instantaneous 1H‐NMR results proved that the obtained copolymer had a chain structure with AA segments gradually changing to TFEMA segments. The copolymer films had lower surface free energies and slightly microphase separation structures. The amphiphilic copolymer with gradient structures could self‐assemble to form aggregates in selective solvents. The type and composition of solvent mixtures had great effects on the morphology and sizes of aggregates, which were investigated by transmission electron microscopy and dynamic light scattering, respectively. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci., 2013  相似文献   

19.
A fluorinated hyperbranched polyimide (HBPI) is synthesized by using a triamine monomer, 1,3,5‐tris(2‐trifluoromethyl‐4‐aminophenoxy)benzene (TFAPOB) (B3), as a “core” molecule, 4,4′‐oxydiphthalic anhydride (ODPA) as a A2 monomer, and 4‐aminophthalonitrile as an end‐capping reagent. After that, a series of novel fluorinated hyperbranched polyimides end‐capped with metallophthalocyanines were prepared by the reactions of dicyanophenyl end‐capped hyperbranched polyimide with excessive amounts of 1,2‐dicyanobenzene and the corresponding metal salt in quinoline. The resulting polyimides containing metallophthalocyanine unites shows optical absorption in the visible region. The absorption bands of the polymers in chloroform solution are in the range of 665–701 nm. These polyimides show glass transition temperatures between 216 and 225°C, and the 5 wt % weight loss temperature of the polymers varied from 440 to 543°C under nitrogen. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
Polystyrene (PSt) or poly(vinylbenzyl chloride) (PVBC) crosslinked with divinylbenzyl (DVB) materials were synthesized through free radical polymerization into templates formed by the surfactant polyoxyethylene (4) lauryl ether (Brij‐30). The chemical composition of the final products was verified through attenuated total reflectance infrared spectroscopy (ATR‐IR) and the thermal behavior was investigated through thermogravimetric analysis (TGA). Depending on the organization of Brij‐30 in aqueous solution, three characteristic structures, namely spherical nanoparticles, platelet‐like objects and three‐dimensional networks, were identified through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The spherical nanoparticles and the platelet‐like objects form rather stable dispersions, especially in aqueous surfactant solutions, as exemplified by the evolution of the turbidity of the PSt‐based materials, using sodium dodecyl sulfate as surfactant. All materials retain their integrity even after thermal treatment at high temperature (~200–250°C). The benzyl chloride group of the PVBC‐based materials offers a significant potential for further elaboration and practical applications, since they can be further functionalized while retaining their integrity. This potential is demonstrated here through hydrolysis to obtain hydroxyl‐functionalized three‐dimensional networks. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43297.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号