首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocomposites of poly(lactide) (PLA) and the PLA plasticized with diglycerine tetraacetate (PL‐710) and ethylene glycol oligomer containing organo‐modified montmorillonites (ODA‐M and PGS‐M) by the protonated ammonium cations of octadecylamine and poly(ethylene glycol) stearylamine were prepared by melt intercalation method. In the X‐ray diffraction analysis, the PLA/ODA‐M and plasticized PLA/ODA‐M composites showed a clear enlargement of the difference of interlayer spacing between the composite and clay itself, indicating the formation of intercalated nanocomposite. However, a little enlargement of the interlayer spacing was observed for the PLA/PGS‐M and plasticized PLA/PGS‐M composites. From morphological studies using transmission electron microscopy, a finer dispersion of clay was observed for PLA/ODA‐M composite than PLA/PGS‐M composite and all the composites using the plasticized PLA. The PLA and PLA/PL‐710 composites containing ODA‐M showed a higher tensile strength and modulus than the corresponding composites with PGS‐M. The PLA/PL‐710 (10 wt %) composite containing ODA‐M showed considerably higher elongation at break than the pristine plasticized PLA, and had a comparable tensile modulus to pure PLA. The glass transition temperature (Tg) of the composites decreased with increasing plasticizer. The addition of the clays did not cause a significant increase of Tg. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

2.
Nanocomposites based on biodegradable poly(butylene adipate‐co‐terephthalate) (PBAT) and layered silicates were prepared by the melt intercalation method. Nonmodified montmorillonite (MMT) and organo‐modified MMTs (DA‐M, ODA‐M, and LEA‐M) by the protonated ammonium cations of dodecylamine, octadecylamine, and N‐lauryldiethanolamine, respectively, were used as the layered silicates. The comparison of interlayer spacing between clay and PBAT composites with inorganic content 3 wt % measured by X‐ray diffraction (XRD) revealed the formation of intercalated nanocomposites in DA‐M and LEA‐M. In case of PBAT/ODA‐M (3 wt %), no clear peak related to interlayer spacing was observed. From morphological studies using transmission electron microscopy, the ODA‐M was found to be finely and homogeneously dispersed in the matrix polymer, indicating the formation of exfoliated nanocomposite. When ODA‐M content was increased, the XRD peak related to intercalated clay increased. Although the exfoliated ODA‐M (3 wt %) nanocomposite showed a lower tensile modulus than the intercalated DA‐M and LEA‐M (3 wt %) composites, the PBAT/ODA‐M composite with inorganic content 5 wt % showed the highest tensile modulus, strength, and elongation at break among the PBAT composites with inorganic content 5 wt %. Their tensile properties are discussed in relation to the degree of crystallinity of the injection molded samples. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 386–392, 2005  相似文献   

3.
Poly(butylene succinate) and organically modified montmorillonite nanocomposites with there different compositions were prepared via melt blending in a twin‐screw extruder. The structure of the nanocomposites was studied with X‐ray diffraction and transmission electron microscopy, which revealed the formation of intercalated nanocomposites, regardless of the silicate loading. Dynamic mechanical analysis revealed a substantial increase in the storage modulus of the nanocomposites over the entire temperature range investigated. The tensile property measurements showed a relative increase in the stiffness with a simultaneous decrease in the yield strength in comparison with that of neat poly(butylene succinate). The oxygen gas barrier property of neat poly(butylene succinate) improved after nanocomposite preparation with organically modified montmorillonite. The effect of the layered‐silicate loading on the melt‐state linear viscoelastic behavior of the intercalated nanocomposites was also investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 777–785, 2006  相似文献   

4.
The biodegradability of poly(butylene adipate‐co‐butylene terephthalate) (PBAT) and PBAT/starch composites with layered silicates prepared by melt intercalation was evaluated with aerobic biodegradability tests in soil and in an aqueous medium containing activated sludge. Nonmodified montmorillonite (MMT) and octadecylamine‐modified montmorillonite (ODA‐M), known to give a microcomposite and an intercalated nanocomposite for PBAT, respectively, were used as layered silicates. After they were buried in the soil for 8 months, the PBAT/MMT microcomposite exhibited a higher weight loss than the control PBAT, whereas the PBAT/ODA‐M nanocomposite showed a lower weight loss instead. Also, the biodegradability test in the aqueous medium, by determining the biochemical oxygen demand, showed that the addition of MMT and/or starch to PBAT promoted biodegradation, whereas the addition of ODA‐M did not. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

5.
2,7‐Bis(4‐aminophenoxy) naphthalene (BAPN), a naphthalene‐containing diamine, was synthesized and polymerized with a 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) to obtain a polyimide (PI) via thermal imidization. To enhance the thermal and mechanical properties of the polymer, PI–Montmorillonite (MMT) nanocomposites were prepared from a DMAc solution of poly(amic acid) and a DMAc dispersion of MMT, which were organo‐modified with various amounts of n‐dodecylamine (DOA) or cetylpyridium chloride (CPC). FTIR, XRD, and TEM (transmission electron microscopy) were used to verify the incorporation of the modifying agents into the clay structure and the intercalation of the organoclay into the PI matrix. Results demonstrated that the introduction of a small amount of MMT (up to 5%) led to the improvement in thermal stability and mechanical properties of PI. The decomposition temperature of 5% weight loss (Td,5%) in N2 was increased by 46 and 36°C in comparison with pristine PI for the organoclay content of 5% with DOA and CPC, respectively. The nanocomposites were simultaneously strengthened and toughened. The dielectric constant, CTE, and water absorption were decreased. However, at higher organoclay contents (5–10%), these properties were reduced because the organoclay was poorly dispersed and resulted in aggregate formation. The effects of different organo‐modifiers on the properties of PI–MMT nanocomposite were also studied; the results showed that DOA was comparable with CPC. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

6.
Itaconate‐unit‐containing poly(butylene succinate) (PBSI) was synthesized by the reaction of 1,4‐butanediol, succinic acid, and itaconic acid in a molar ratio of 2.0 : 1.0 : 1.0, and the obtained PBSI was reacted with methacryl‐group‐substituted polysilsesquioxane (ME‐PSQ) in the presence of benzoyl peroxide (BPO) at 130°C to produce PBSI/ME‐PSQ hybrid composites. The thermal and dynamic mechanical properties of the PBSI/ME‐PSQ hybrid composites were investigated in comparison with those of PBSI cured at 130°C in the presence of BPO. As a result, the hybrid composites showed a much higher thermal degradation temperature and storage modulus in the rubbery state than the cured PBSI (C‐PBSI). The thermal degradation temperature and storage modulus of the hybrid composites increased with increasing ME‐PSQ content. The glass‐transition temperature, measured by dynamic mechanical analysis of the hybrid composites, somewhat increased with increasing ME‐PSQ content. However, the glass‐transition temperatures of all the hybrid composites were lower than that of C‐PBSI. Although the IR absorption peak related to C?C groups was not detected for C‐PBSI, some olefinic absorption peaks remained for all the hybrid composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Nanocomposites of poly(butylene terephthalate) (PBT) with the organoclay C12PPh‐MMT were prepared using in situ intercalation polymerization. Hybrids with various organoclay contents were processed for fiber spinning to examine their thermal behavior, tensile mechanical properties, and morphologies for various draw ratios (DRs). The thermal properties (Tg, Tm, and TDi) of the hybrid fibers were found to be better than those of pure PBT fibers and were unchanged by variation of the organoclay loading up to 2 wt %. However, these thermal properties remained unchanged for DRs ranging from 1 to 18. Most clay layers were dispersed homogeneously in the matrix polymer, although some clusters were also detected. The tensile properties of the hybrid fibers increased gradually with increasing C12PPh‐MMT content at DR = 1. However, the ultimate strengths and initial moduli of the hybrid fibers decreased markedly with increasing DR. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1247–1254, 2006  相似文献   

8.
Blends of poly(L ‐lactic acid) (PLLA) and poly (butylene terephthalate‐co‐adipate) (PBTA) were prepared at ratios of 50 : 50, 60 : 40, and 80 : 20 by melt blending in a Laboplastomill. Improved mechanical properties were observed in PLLA when it was blended with PBTA, a biodegradable flexible polymer. Irradiation of these blends with an electron beam (EB) in the presence of triallyl isocyanurate (TAIC), a polyfunctional monomer, did not cause any significant improvement in the mechanical properties, although the gel fraction increased with the TAIC level and dose level. Irradiation of the blends without TAIC led to a reduction in the elongation at break (Eb) but did not show a significant effect on the tensile strength. Eb of PBTA was unaffected by EB radiation in the absence of TAIC. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Poly(lactic acid)/organo‐montmorillonite (PLA/OMMT) nanocomposites toughened with maleated styrene‐ethylene/butylene‐styrene (SEBS‐g‐MAH) were prepared by melt‐compounding using co‐rotating twin‐screw extruder followed by injection molding. The dispersibility and intercalation/exfoliation of OMMT in PLA was characterized using X‐ray diffraction and transmission electron microscopy (TEM). The mechanical properties of the PLA nanocomposites was investigated by tensile and Izod impact tests. Thermogravimetric analyzer and differential scanning calorimeter were used to study the thermal behaviors of the nanocomposite. The homogenous dispersion of the OMMT silicate layers and SEBS‐g‐MAH encapsulated OMMT layered silicate can be observed from TEM. Impact strength and elongation at break of the PLA nanocomposites was enhanced significantly by the addition of SEBS‐g‐MAH. Thermal stability of the PLA/OMMT nanocomposites was improved in the presence of SEBS‐g‐MAH. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Nanocomposites made of poly(lactic acid), poly(butylene succinate), and organically modified montmorillonite were prepared by melt blending in a twin screw extruder. The influence of the organoclay content on nanocomposite properties was investigated. The nanocomposite structure has been characterized by various techniques at different scales. X‐ray diffraction showed an intercalated structure whereas rheological investigations in small amplitude oscillatory shear indicated a partial exfoliation. It was also shown that organoclay was evenly dispersed in the matrix even though some large aggregates were also observed. The mechanical properties of nanocomposites were measured in uniaxial tensile test. Oxygen and water vapor permeability was also characterized. It was shown that dispersed organoclay and aggregates have a direct impact on mechanical properties and permeability. An increase of Young's modulus by 41% and a decrease of permeability by 40% could be obtained with 7 wt % organoclay. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40364.  相似文献   

11.
In this study, melt blends of poly(butylene terephthalate) (PBT) with epoxy resin were characterized by dynamic mechanical analysis, differential scanning calorimetry, tensile testing, Fourier transform infrared spectroscopy, and wide‐angle X‐ray diffraction. The results indicate that the presence of epoxy resin influenced either the mechanical properties of the PBT/epoxy blends or the crystallization of PBT. The epoxy resin was completely miscible with the PBT matrix. This was beneficial to the improvement of the impact performance of the PBT/epoxy blends. The modification of the PBT/epoxy blends were achieved at epoxy resin contents from 1 to 7%. The maximum increase of the notched Izod impact strength (≈ 20%) of the PBT/epoxy blends was obtained at 1 wt % epoxy resin content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Layered‐silicate‐based polymer–clay nanocomposite materials were prepared depending on the surface modification of montmorillonite (MMT). Nanocomposites consisting of poly(butylene terephthalate) (PBT) as a matrix and dispersed inorganic clay modified with cetyl pyridinium chloride (CPC), benzyl dimethyl N‐hexadecyl ammonium chloride, and hexadecyl trimethyl ammonium bromide by direct melt intercalation were studied. The organoclay loading was varied from 1 to 5 wt %. The organoclays were characterized with X‐ray diffraction (XRD) to compute the crystallographic spacing and with thermogravimetric analysis to study the thermal stability. Detailed investigations of the mechanical and thermal properties as well as a dispersion study by XRD of the PBT/clay nanocomposites were conducted. X‐ray scattering showed that the layers of organoclay were intercalated with intercalating agents. According to the results of a differential scanning calorimetry analysis, clay acted as a nucleating agent, affecting the crystallization. The PBT nanocomposites containing clay treated with CPC showed good mechanical properties because of intercalation into the polymer matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
A series of high molecular weight poly (butylene succinate) and its copolyester containing rigid imide units were synthesized in this article. The chemical structure and composition of the copolyesters were determined by 1H NMR spectroscopy and Fourier transform infrared spectroscope (FT‐IR). The thermal properties, crystallization behavior and mechanical properties of polymers were investigated using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide‐angle X‐ray diffraction (WAXD) and mechanical testing. The enzymatic degradation was investigated using pancreatic lipase solution. The results showed that the melting temperature (Tm) of the copolyester decreased with the increment in pyromellitic imide unit content. However, the thermal degradation temperature (5% decomposition temperature) changed little. Meanwhile, the enzymatic degradation rate of poly (butylene succinate) was enhanced. The mechanical properties showed that the tensile strength had a trend of decrease, but the elongation at break was improved with the increment in imide units. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40807.  相似文献   

14.
Low‐molecular‐weight HOOC‐terminated poly(butylene adipate) prepolymer (PrePBA) and poly(butylene succinate) prepolymer (PrePBS) were synthesized through melt‐condensation polymerization from adipic acid or succinic acid with butanediol. The catalyzed chain extension of these prepolymers was carried out at 180–220°C with 2,2′‐(1,4‐phenylene)‐bis(2‐oxazoline) as a chain extender and p‐toluenesulfonic acid (p‐TSA) as a catalyst. Higher molecular weight polyesters were obtained from the catalyzed chain extension than from the noncatalyzed one. However, an improperly high amount of p‐TSA and a high temperature caused branching or a crosslinking reaction. Under optimal conditions, chain‐extended poly(butylene adipate) (PBA) with a number‐average molecular weight up to 29,600 and poly(butylene succinate) (PBS) with an intrinsic viscosity of 0.82 dL/g were synthesized. The chain‐extended polyesters were characterized by IR spectroscopy, 1H‐NMR spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis, wide‐angle X‐ray scattering, and tensile testing. DSC, wide‐angle X‐ray scattering, and thermogravimetric analysis characterization showed that the chain‐extended PBA and PBS had lower melting temperatures and crystallinities and slower crystallization rates and were less thermally stable than PrePBA and PrePBS. This deterioration of their properties was not harmful enough to impair their thermal processing properties and should not prevent them from being used as biodegradable thermoplastics. The tensile strength of the chain‐extended PBS was about 31.05 MPa. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
Phenolic resin (PF)/montmorillonite (MMT) nanocomposites have been successfully prepared using intercalative polymerization of resole‐type phenolic resins in montmorillonites modified by octadecylamine (C18), benzyldimethylhexadecylammonium chloride (B2MH), benzyltriethylammonium chloride (B3E), and benzyldimethylphenylammonium chloride (B2MP). X‐ray diffraction measurements and transmission electron microscope observations showed that clay platelets were partially exfoliated or intercalated after complete curing of the phenolic resins. The cured nanocomposites were named as modifier‐MP (MP means montmorillonite‐phenolic resin), for example, B3E‐MP. Thermogravimetric analysis showed that thermal decomposition temperatures (Tds) of the cured nanocomposites B2MP‐MP (826 K), B3E‐MP (794 K), and B2MH‐MP (783 K) were much higher than those of C18‐MP (768 K) and cured phenolic resin (737 K). Therefore, thermal stability of the nanocomposites depends mainly on the chemical structure of the organic modifiers. B2MP‐MP possesses the highest Td since B2MP contains both benzyl and phenyl groups, followed with B3E‐MP and B2MH‐MP whose modifiers contain only one benzyl group. This is attributable to favorable interaction between phenolic resin and organic modifiers containing benzene rings. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5336–5343, 2006  相似文献   

16.
This study describes the microstructure and thermal and mechanical properties of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHB/HV)–organoclay nanocomposites prepared by melt intercalation using Cloisite 30B, a monotallow bis‐hydroxyethyl ammonium‐modified montmorillonite clay. X‐ray diffractometry and transmission electron microscopy analyses clearly confirm that an intercalated microstructure is formed and finely distributed in the PHB/HV copolymer matrix because PHB/HV has a strong hydrogen bond interaction with the hydroxyl group in the organic modifier of Cloisite 30B. The nanodispersed organoclay also acts a nucleating agent, increasing the temperature and rate of crystallization of PHB/HV; therefore, the thermal stability and tensile properties of the organoclay‐based nanocomposites are enhanced. These results confirm that the organoclay nanocomposite greatly improves the material properties of PHB/HV. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 525–529, 2003  相似文献   

17.
Comprehensive high‐performance epoxy nanocomposites were successfully prepared by co‐incorporating organo‐montmorillonite (o‐MMT) and nano‐SiO2 into epoxy matrix. Because of the strong interaction between nanoscale particles, the MMT layers were highly exfoliated, and the exfoliated nanoscale MMT monoplatelets took an interlacing arrangement with the nano‐SiO2 particles in the epoxy matrix, as evidenced by X‐ray diffraction measurement and transmission electron microscopy inspection. Mechanical tests and thermal analyses showed that the resulting epoxy/o‐MMT/nano‐SiO2 nanocomposites improved substantially over pure epoxy and epoxy/o‐MMT nanocomposites in tensile modulus, tensile strength, flexural modulus, flexural strength, notch impact strength, glass transition temperature, and thermal decomposition temperature. This study suggests that co‐incorporating two properly selected nanoscale particles into polymer is one pathway to success in preparing comprehensive high‐performance polymer nanocomposites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
The influence of organic modifiers on intercalation extent, structure, thermal and mechanical properties of poly(methyl methacrylate) (PMMA)–clay nanocomposites were studied. Two different organic modifiers with varying hydrophobicity (single tallow versus ditallow) were investigated. The nanocomposites were prepared from melt processing method and characterized using wide angle X‐ray diffraction, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), and tensile tests. Mechanical properties such as tensile modulus (E), break stress (σbrk), and % break strain (εbrk) were determined for nanocomposites at various clay loadings. Extent of PMMA intercalation is sufficient and in the range 9–15 Å depending on organoclay and filler loading. Overall thermal stability of nanocomposites increases by 16–30°C. The enhancement in Tg of nanocomposite is merely by 2–4°C. With increase in clay loading, tensile modulus increases linearly while % break strain decreases. Break stress is found to increase till 4 wt % and further decreases at higher clay loadings. The overall improvement in thermal and mechanical properties was higher for the organoclay containing organic modifier with lower hydrophobicity and single tallow amine chemical structure. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
The mechanical and thermomechanical properties as well as microstructures of polypropylene/nylon 6/clay nanocomposites prepared by varying the loading of PP‐MA compatibilizer and organoclay (OMMT) were investigated. The compatibilizer PP‐MA was used to improve the adhesion between the phases of polymers and the dispersion of OMMT in polymer matrix. Improvement of interfacial adhesion between the PP and PA6 phases occurred after the addition of PP‐MA as confirmed by SEM micrographs. Moreover, as shown by the DSC thermograms and XRD results, the degree of crystallinity of PA6 decreased in the presence of PP‐MA. The presence of OMMT increased the tensile modulus as a function of OMMT loading due to the good dispersion of OMMT in the matrix. The insertion of polymer chains between clay platelets was verified by both XRD and TEM techniques. The viscosity of the nanocomposites decreased as PP‐MA loading increased due to the change in sizes of PA6 dispersed phase, and the viscosity increased as OMMT loading increased due to the interaction between the clay platelets and polymer chains. The clay platelets were located at the interface between PP and PA6 as confirmed by both SEM and TEM. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Poly(butylene succinate) (PBS) filled kenaf bast fiber (KBF) composites were fabricated via compression molding. The effects of KBF loading on the flexural and impact properties of the composites were investigated for fiber loadings of 10–40 wt %. The optimum flexural strength of the composites was achieved at 30 wt % fiber loading. However, the flexural modulus of the composites kept increasing with increasing fiber loading. Increasing the fiber loading led to a drop in the impact strength of about 57.5–73.6%; this was due to the stiff nature of the KBF. The effect of the fiber length (5, 10, 15, and 20 mm) on the flexural and impact properties was investigated for the 30 wt % KBF loaded composites. The composites with 10‐mm KBF showed the highest flexural and impact properties in comparison to the others. The inferior flexural and impact strength of the composites with 15‐ and 20‐mm KBF could be attributed to the relatively longer fibers that underwent fiber attrition during compounding, which consequently led to the deterioration of the fiber. This was proven by analyses of the fiber length, diameter, and aspect ratio. The addition of maleated PBS as a compatibilizer resulted in the enhancement of the composite's flexural and impact properties due to the formation of better fiber–matrix interfacial adhesion. This was proven by scanning electron microscopy observations of the composites' fracture surfaces. The removal of unreacted maleic anhydride and dicumyl peroxide residuals from the compatibilizers led to better fiber–matrix interfacial adhesion and a slightly enhanced composite strength. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号