首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goal of this research is to develop a composite hydrogel system for sustained release of therapeutic agents. The hybrid hydrogels were prepared by radiation crosslinking on aqueous solution of Chitosan (CS)/N‐vinyl‐2‐pyrrolidone (NVP) with different loads of CaCO3 in the presence of hydrocortisone acetate (HCA), an anti‐inflammatory drugs. Physical characteristics of CS/NVP/CaCO3 were studied using X‐ray diffraction (XRD) and infrared spectrophotometery (IR). The porous structure of resulted hydrogel was confirmed by SEM micrographs. The effect of doses and calcium carbonate amount on the swelling of the hydrogels was investigated. The ability of the prepared CS/NVP/CaCO3‐based hybrid hydrogels to be used as drug carriers for anti‐inflammatory‐specific drug delivery system was estimated using HCA as a model drug. POLYM. COMPOS., 35:1176–1183, 2014. © 2013 Society of Plastics Engineers  相似文献   

2.
Hydrophobically modified poly[2‐(diethylamino)ethylmethacrylate‐co‐N‐vinyl‐2‐pyrrolidone/octadecyl acrylate) [P(DEAEMA‐co‐NVP/OA)] hydrogels were synthesized by free‐radical crosslinking copolymerization of 2‐(diethylamino)ethylmethacrylate (DEAEMA), N‐vinyl‐2‐pyrrolidone (NVP) with different amounts of hydrophobic comonomer octadecyl acrylate (OA) in tert‐butanol with ethylene glycole dimethacrylate (EGDMA) as a crosslinker. The swelling equilibrium of the hydrogels was investigated as a function of temperature and hydrophobic comonomer content in aqueous solutions of the anionic surfactant sodium dodecyl sulfate (SDS) and the cationic surfactant dodecyltrimethylammonium bromide (DTAB). The results indicated that the swelling behavior and temperature sensitivity of the hydrogels were affected by the type and concentration of surfactant solutions. Additionally, the amount of the adsorbed SDS and DTAB molecules onto the hydrogels was determined by fluorescence measurements. An increase of OA content in the hydrogel caused an increase in the amount of adsorbed surfactant molecules in both media. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3771–3775, 2007  相似文献   

3.
This work reports the preparation of 2‐hydroxyethyl methacrylate (HEMA)/N‐vinyl‐2‐pyrrolidone (NVP) interpenetrating polymer network (IPN) hydrogels by UV‐initiated polymerization in the presence of free radical photoinitiator Darocur 1173 and cationic photoinitiator 4,4′‐dimethyl diphenyl iodonium hexafluorophosphate. The polymerization mechanism was investigated by the formation of gel network. The structure and morphology of the HEMA/NVP IPN hydrogels were characterized by fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The results showed that the IPN gels exhibited homogeneous morphology. The dehydration rates of HEMA/NVP IPN hydrogels were examined by the gravimetric method. The results revealed that the hydrogels had a significant improvement of antidehydration ability in comparison with poly(2‐hydroxyethyl methacrylate)(PHEMA) hydrogel embedded physically with poly(N‐vinyl‐2‐pyrrolidone)(PVP). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
To improve equilibrium water content, dehydrothermally crosslinked poly(vinyl alcohol) (PVA) hydrogel was grafted with N‐vinyl pyrrolidone (NVP) or acrylic acid (AA) monomer using γ‐radiation. Swelling behavior of the grafted hydrogels was studied in phosphate‐buffered saline, and cell viability was evaluated using fibroblast cells from mouse connective tissue. Equilibrium water content of AA‐ and NVP‐grafted PVA hydrogel ranged between 40–60% and 60–80%, respectively, depending on radiation dose and monomer concentration. For maximum degree of swelling, the optimum monomer concentration and radiation dose were 20% by weight and 20 kGy, respectively. Fibroblast cells seeded on NVP‐grafted hydrogel had an extended oval morphology while those seeded on AA‐grafted PVA had a rounded spherical morphology. These results support the use of NVP for grafting PVA to increase swelling and improve cell viability. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2862–2868, 2004  相似文献   

5.
A series of novel hydrogels were prepared from acrylic acid (AA), N‐vinyl pyrrolidone (NVP), and chitosan by photopolymerization. The swelling behavior, gel strength, and drug release behavior of the poly(AA/NVP) copolymeric hydrogels and corresponding interpenetrating polymer network hydrogels were investigated. Results showed that the swelling ratios for the present hydrogels decreased with an increase of NVP content in the gel, but the gel strength increased with an increase of NVP content in the gel. Results also showed that the drug‐release behavior for the gels is related to the ionicity of drug and the swelling ratio of the gel. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2135–2142, 2004  相似文献   

6.
Copolymer hydrogels were prepared through the γ irradiation of aqueous solutions composed of different ratios of acrylamide (AAm) and vinyl pyrrolidone (VP) monomers. The chemical structure, thermal stability, and structural morphology of the hydrogels were characterized with Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy, respectively. The IR spectroscopy analysis showed the formation of copolymerization and the presence of hydrogen bonding. The TGA study showed that the AAm/VP‐based hydrogels possessed higher thermal stability than polyacrylamide (PAAm). However, the thermal stability of the AAm/VP hydrogels increased with an increasing ratio of the VP component. The study of the swelling kinetics in water showed that all the hydrogels reached the equilibrium state after 24 h. However, the AAm/VP‐based hydrogels showed swelling in water that was lower than that of the hydrogel based on pure AAm. Meanwhile, the degree of swelling of the AAm/VP‐based hydrogels decreased with an increasing ratio of VP in the feeding solutions. The results showed that the PAAm and AAm/VP‐based hydrogels prepared at 50 kGy were affected by a change in the temperature around 25°C, whereas the hydrogels prepared at 25 kGy did not show this characteristic. However, the hydrogels prepared at different doses displayed reversible pH character. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
This work has been concerned with the synthesis of the hydrogels of poly (vinyl pyrrolidone) (NVP), poly (hydroxy ethylmethacrylate) (HEMA), and their copolymer under the effect of gamma radiation in the presence of N,N‐methylenebisacryl‐amide (MBAm) as a crosslinking agent. The effect of the different factors that may affect the gelation and yield product, such as solvent composition and irradiation dose, was investigated. The formed hydrogels were characterized in terms of swelling in water and different organic solvents, X‐ray diffraction (XRD), and IR spectroscopic analysis. The sorption capability of these hydrogels towards some commercial basic and acid dyesstuffs was also studied. The results showed that a solvent mixture composed of equal contents of water and methanol is the most suitable to afford the minimum sol fraction and the highest yield product at a minimal irradiation dose of 10 kGy. It was observed that NVP hydrogel displayed the highest swelling in water, alcohols, and dimethyformamide of ~1300% and a lower tendency to swell in nonpolar solvents. The results showed that HEMA hydrogel has a high affinity to absorb basic dyes while NVP has a tendency for acid dyes. Also, the sorption of either the basic or acid dyes by the different hydrogels was found to greatly depend on the concentration of dye in solution and the mass of the used hydrogel. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3274–3280, 2004  相似文献   

8.
Poly(N‐vinyl‐2‐pyrrolidone) and poly(N‐vinyl‐2‐pyrrolidone/acrylic acid) hydrogels were prepared by gamma irradiation for the removal of heavy metal ions (i.e., lead, copper, zinc, and cadmium) from aqueous solutions containing different amounts of these ions (2.5–10 mg/L) and at different pH values (1–13). The observed affinity order in adsorption of these metal ions on the hydrogels was Zn(II) > Pb(II) > Cu(II) > Cd(II) under competitive conditions. The optimal pH range for the heavy metal ions was from 7 to 9. The adsorption of the heavy metal ions decreased with increasing temperature in both water and synthetic seawater conditions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2013–2018, 2003  相似文献   

9.
Summary: Polyelectrolyte hydrogels containing diprotic acid moieties sensitive to ionic strength changes of the swelling medium were synthesized from N,N‐diethylaminoethyl methacrylate (DEAEMA), N‐vinyl‐2‐pyrrolidone (VP) and itaconic acid (IA) by using ammonium persulfate (APS) as a free radical initiator in the presence of the cross‐linker, methylenebisacrylamide (MBAAm). The swelling behavior of the ionic poly[(N,N‐diethylaminoethyl methacrylate)‐co‐(N‐vinyl‐2‐pyrrolidone)] [P(DEAEMA/VP)] hydrogels were investigated in pure water; in NaCI solutions with pH 4 and 9; and in water‐acetone mixtures depending on the IA content in the hydrogel. The average molecular mass between cross‐links ( ) and polymer‐solvent interaction parameter (χ) of the hydrogels were determined from equilibrium swelling values. The pulsatile swelling behavior was also observed in response to solvent changes between the solution in water and in acetone. The equilibrium swelling ratio of these hydrogels was basically unaffected with change in temperature. The swelling variations were explained according to the swelling theory based on the hydrogel chemical structure.

Pulsatile swelling behavior of ionic P(DEAEMA/VP) hydrogels in response to solvent changes between water and acetone at 25 °C.  相似文献   


10.
Poly(acrylonitrile‐coN ‐vinyl‐2‐pyrrolidone)s (PANCNVPs) show excellent biocompatibility. In this work, PANCNVPs with different contents of N‐vinyl‐2‐pyrrolidone (NVP) were fabricated into asymmetric membranes by the phase inversion method. The surface chemical composition of the resultant membranes was determined by Fourier transform infrared spectroscopy–attenuated total reflection. Field emission scanning electron microscopy was used to examine the surface and cross section morphologies of the membranes. It was found that the morphologies hardly change with the increase of NVP content in PANCNVP, while the deionized water flux increases remarkably and the bovine serum albumin (BSA) retention decreases slightly. Experiment of dynamic BSA solution filtration was carried out to evaluate the antifouling properties of the studied membranes. The relative flux reduction of PANCNVP membrane containing 30.9 wt % of NVP is 25.9%, which is far smaller than that of the polyacrylonitrile membrane (68.8%). Results deduce that this improvement comes from the excellent biocompatibility of NVP moieties instead of the hydrophilicity change, because the water contact angles of these membranes fluctuate between 60 and 70°. Results from the membranes using poly(N‐vinyl‐2‐pyrrolidone) (PVP) as an additive confirm that, to a certain extent, the PANCNVP membranes show the advantages of antifouling compared with the polyacrylonitrile/PVP blending membrane. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4577–4583, 2006  相似文献   

11.
Hydrogels, composed of poly(N‐vinyl‐2‐pyrrolidone) and crosslinked polyacrylamide, were synthesized and the release of vitamin B12 from these hydrogels was studied as a function of the degree of crosslinking and pH of the external swelling media. The three drug‐loaded hydrogel samples synthesized with different crosslinking ratios of 0.3, 0.7, and 1.2 (in mol %) follow different drug‐release mechanisms, that is, chain relaxation with zero‐order, non‐Fickian and Fickian, or diffusion‐controlled mechanisms. To establish a correlation between their swelling behavior and drug‐release mechanism, the former was studied by the weight‐gain method and, at the same time, the concentration of the drug released was studied colorimetrically. Various swelling parameters such as the swelling exponent n, gel‐characteristic constant k, penetration velocity v, and diffusion coefficient D were evaluated to reflect the quantitative aspect of the swelling behavior of these hydrogels. Finally, the drug‐release behavior of the hydrogels was explained by proposing the swelling‐dependent mechanism. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1706–1714, 2000  相似文献   

12.
Poly(vinyl alcohol)/poly(N‐vinyl pyrrolidone) (PVP)/chitosan hydrogels were prepared by a low‐temperature treatment and subsequent 60Co γ‐ray irradiation and then were medicated with ciprofloxacin lactate (an antibiotic) and chitosan oligomer (molecular weight = 3000 g/mol). The gel content, swelling ratio, tensile strength, and crystallinity of the hydrogels were determined. The effects of the chitosan molecular weight, the low‐temperature treatment procedure, and the radiation dosage on the hydrogel properties were examined. The molecular weight of chitosan was lowered by the irradiation, but its basic polysaccharide structure was not destroyed. Repeating the low‐temperature treatment and γ‐ray irradiation caused effective physical crosslinking and chemical crosslinking, respectively, and contributed to the mechanical strength of the final hydrogels. The incorporation of PVP and chitosan resulted in a significant improvement in the equilibrium swelling ratio and elongation ratio of the prepared hydrogels. The ciprofloxacin lactate and chitosan oligomer were soaked into the hydrogels. Their in vitro release behaviors were examined, and they were found to follow diffusion‐controlled kinetics. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2453–2463, 2006  相似文献   

13.
Hydrogels in the form of rods with varying crosslink densities and three‐dimensional network structures were prepared from Poly(N‐vinyl‐2‐pyrrolidone) (PVP)/water and PVP/water/persulfate systems by irradiation with γ rays at ambient temperature. Average molecular weights between crosslinks, percent swelling, swelling equilibrium values, diffusion/swelling characteristics (i.e., the structure of network constant, the type of diffusion, the initial swelling rate, swelling rate constant), and equilibrium water content were evaluated for both hydrogel systems. Water diffusion to the hydrogel is a non‐Fickian type diffusion and diffusion coefficients vary from 6.56 × 10−7 to 2.51 × 10−7cm2min−1 for PVP and 6.09 × 10−7 to 2.14 × 10−7 cm2min−1 for PVP/persulfate hydrogel systems. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 994–1000, 2000  相似文献   

14.
Poly(N‐vinyl 2‐pyrrolidone‐g‐citric acid) (PVP‐g‐CA) hydrogels with varying compositions were prepared from ternary mixtures of N‐vinyl 2‐pyrrolidone–citric acid–water by using 60Co γ‐rays. The effect of gel composition on the uranyl ions adsorption capacity of PVP‐g‐CA hydrogels was investigated. Uranyl adsorption capacity of these hydrogels were found to be in the range of 18–144 mg [UO]/g dry gel from the aqueous solution of uranyl nitrate and 22–156 mg [UO]/g dry gel from the aqueous solution of uranyl acetate, depending on the content of citric acid in the hydrogel, while poly(N‐vinyl 2‐pyrrolidone) hydrogel did not sorb any uranyl ion. The swelling of PVP‐g‐CA hydrogel containing 2.7 mol % CA was observed in water (1620%), in uranyl acetate solution (1450%) and in uranyl nitrate solution (1360%), as compared to 700% swelling of pure PVP hydrogels. The diffusion coefficients were varied from 12.57 up to 4.04 • 10−8 m2 s−1. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1037–1043, 2000  相似文献   

15.
A series of temperature‐ and pH‐responsive hydrogels were prepared from acrylic acid (AAc), acrylamide (AAm), oligo(ethylene glycol)monoacrylate (OEGMA), and oligo(ethylene glycol)diacrylate by varying the AAc:AAm molar ratio and the OEGMA content. Phase‐transition temperatures and swelling ratios of the obtained poly(AAc‐co‐AAm)‐graft‐OEG gels were measured as a function of temperature and pH. At pH < 5, the obvious transition temperatures ranging from 5 to 35°C were obtained as the AAc : AAm molar ratio was varied. The highest transition temperature was obtained at the AAc : AAm ratios of 5 : 5 and 6 : 4, and the sharp transition curves were observed at the AAc : AAm ratios from 5 : 5 to 8 : 2. The transition temperature further increased with increasing OEGMA content. It was suggested that OEG graft chains with a large mobility played an important role for the formation of hydrogen bonding in the hydrogels. The gels prepared here showed obvious reproducibility of the phase transition in response to temperature changes, which suggests the feasibility of their practical applications. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 798–805, 2001  相似文献   

16.
The objective of this research was the surface grafting polymerization of biocompatible monomer N‐vinyl‐2‐pyrrolidone (NVP) onto a plasma‐treated nonwoven poly(ethylene terephthalate) (PET) substrate with ultraviolet (UV)‐induced methods. The effects of various parameters, such as the monomer concentration, reaction time, initiator (ammonium peroxodisulfate) concentration, and crosslinking agent (N,N′‐methylene bisacrylamide) concentration, on the grafting percentage were studied. The grafting efficiency of the modified nonwoven PET surfaces reached a maximum at 50 min of UV irradiation and with a 30 wt % aqueous NVP solution. After the plasma activation and/or grafting, the hydrophobic surface of the nonwoven was modified into a hydrophilic surface. NVP was successfully grafted onto nonwoven PET surfaces. The surface wettability showed that the water absorption of NVP‐grafted nonwoven PET (NVP‐g‐nonwoven PET) increased with increasing grafting time. NVP‐g‐nonwoven PET was verified by Fourier transform infrared spectra and scanning electron microscopy measurements. An antibacterial assessment using an anti‐Staphylococcus aureus test indicated that S. aureus was restrained from growing in NVP‐g‐nonwoven PET. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 803–809, 2006  相似文献   

17.
Graft copolymer of N‐vinyl‐2‐pyrrolidone with guar gum was synthesized and its reaction conditions were optimized for better yield using potassium peroxymonosulfate (PMS) and glycolic acid (GA) as a redox initiator. The effect of PMS, GA, hydrogen ions, guar gum, and N‐vinyl‐2‐pyrrolidone (NVP) along with reaction time and temperature were studied by determining the grafting parameters: grafting ratio, efficiency, conversion, add‐on, homopolymer, and rate of grafting. It was observed that the maximum yield occurred at with a time of 120 min at a temperature of 45°C and a guar gum concentration of 0.4 g/L concentration. The graft copolymer was characterized by infrared spectroscopy and thermal analysis. The activation energy for the grafted and ungrafted gum was calculated. It was observed that the graft copolymer was thermally more stable than the pure gum. The swelling and metal ion sorption behavior of guar gum and guar gum‐gN‐vinyl‐2‐pyrrolidone also were studied. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2480–2489, 2006  相似文献   

18.
Poly‐electrolyte N‐vinyl 2‐pyrrolidone‐g‐tartaric acid (PVP‐g‐TA) hydrogels with varying compositions were prepared in the form of rods from ternary mixtures of N‐vinyl 2‐pyrrolidone/tartaric acid/water. The effect of external stimuli, such as the solution pH, ionic strength, and temperature, on uranyl adsorption by these hydrogels was investigated. Uranyl adsorption capacities of the hydrogels were determined to be 53.2–72.2 (mg UO/g dry gel) at pH 1.8, and 35.3–60.7 (mg UO/g dry gel) at pH 3.8, depending on the amount of TA in the hydrogel. The adsorption studies have shown that the temperature and the ionic strength of the swelling solution also influence uranyl ion adsorption by PVP‐g‐TA hydrogels. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2219–2226, 2000  相似文献   

19.
The radiation‐induced graft copolymerization of N‐vinyl‐2‐pyrrolidone (NVP) onto polypropylene films was investigated using the mutual method. The grafted polymer was modified with prepared α,β‐unsaturated nitrile (Scheme 1 ). The water uptake of the grafted and modified grafted films was found to increase with the degree of grafting. It was observed that the swelling behavior of the modified grafted films with α‐cyano‐β‐phenyl crotononitrile improved more than that of the film grafted and modified grafted with α‐cyano‐β‐(2‐thienyl)crotononitrile or α‐cyano‐β‐(2‐pyridyl)crotononitrile. The modification process for the grafted substrate was confirmed by IR spectroscopy. No significant improvement was observed in thermal stability for the modified grafted films compared to the grafted films. Scanning electron microscopy (SEM) of the grafted and modified grafted membranes heated to 150°C showed change in the structure and morphology. Improvement in the hydrophilicity and morphology of these membranes with carbonitriles may increase the permeability of those membranes for some practical applications.  相似文献   

20.
A hydrogel is a polymeric material that exhibits the ability to swell in water and retains a significant fraction of water within its structure, but does not dissolve in water. One of the major problems in the application of these materials is their relatively poor mechanical strength, attributed to the high degree of hydration of the gel. This work was directed to the study of the interactions between hydrophobic and hydrophilized fibers, with the objective of optimization of the mechanical properties of poly(N‐vinyl‐2‐pyrrolidone) membranes. The membranes were prepared by electron‐beam irradiation of an aqueous polymer solution. A nonwoven cloth made of polypropylene matted fiber, grafted with methyl methacrylate, was employed as a reinforcement. The changes in the main properties of the membranes, such as the gel content, swelling characteristics, cytotoxicity, and mechanical behavior, were investigated. The results showed an increase of 800% in tensile strength, without changes in the swelling and cytotoxicity. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 662–666, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号