首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gas–liquid mass transfer in pulp fibre suspensions in a batch‐operated bubble column is explained by observations of bubble size and shape made in a 2D column. Two pulp fibre suspensions (hardwood and softwood kraft) were studied over a range of suspension mass concentrations and gas flow rates. For a given gas flow rate, bubble size was found to increase as suspension concentration increased, moving from smaller spherical/elliptical bubbles to larger spherical‐capped/dimpled‐elliptical bubbles. At relatively low mass concentrations (Cm = 2–3% for the softwood and Cm ? 7% for the hardwood pulp) distinct bubbles were no longer observed in the suspension. Instead, a network of channels formed through which gas flowed. In the bubble column, the volumetric gas–liquid mass transfer rate, kLa, decreased with increasing suspension concentration. From the 2D studies, this occurred as bubble size and rise velocity increased, which would decrease overall bubble surface area and gas holdup in the column. A minimum in kLa occurred between Cm = 2% and 4% which depended on pulp type and was reached near the mass concentration where the flow channels first formed.  相似文献   

2.
The gas holdup, ?, and volumetric mass transfer coefficient, kLa, were measured in a 0.051 m diameter glass column with ethanol as the liquid phase and cobalt catalyst as the solid phase in concentrations of 1.0 and 3.8 vol.‐%. The superficial gas velocity U was varied in the range from 0 to 0.11 m/s, spanning both the homogeneous and heterogeneous flow regimes. Experimental results show that increasing catalyst concentration decreases the gas holdup to a significant extent. The volumetric mass transfer coefficient, kLa, closely follows the trend in gas holdup. Above a superficial gas velocity of 0.04 m/s the value of kLa/? was found to be practically independent of slurry concentration and the gas velocity U; the value of this parameter is found to be about 0.45 s–1. Our studies provide a simple method for the estimation of kLa in industrial‐size bubble column slurry reactors.  相似文献   

3.
The gas‐liquid mass transfer behavior of syngas components, H2 and CO, has been studied in a three‐phase bubble column reactor at industrial conditions. The influences of the main operating conditions, such as temperature, pressure, superficial gas velocity and solid concentration, have been studied systematically. The volumetric liquid‐side mass transfer coefficient kLa is obtained by measuring the dissolution rate of H2 and CO. The gas holdup and the bubble size distribution in the reactor are measured by an optical fiber technique, the specific gas‐liquid interfacial area aand the liquid‐side mass transfer coefficient kL are calculated based on the experimental measurements. Empirical correlations are proposed to predict kL and a values for H2 and CO in liquid paraffin/solid particles slurry bubble column reactors.  相似文献   

4.
The volumetric mass transfer coefficient kLa in a 0.1 m‐diameter bubble column was studied for an air‐slurry system. A C9‐C11 n‐paraffin oil was employed as the liquid phase with fine alumina catalyst carrier particles used as the solid phase. The n‐paraffin oil had properties similar to those of the liquid phase in a commercial Fischer‐Tropsch reactor under reaction conditions. The superficial gas velocity UG was varied in the range of 0.01 to 0.8 m/s, spanning both the homogeneous and heterogeneous flow regimes. The slurry concentration ?S ranged from 0 to 0.5. The experimental results obtained show that the gas hold‐up ?G decreases with an increase in slurry concentration, with this decrease being most significant when ?S < 0.2. kLa/?G was found to be practically independent of the superficial gas velocity when UG > 0.1 m/s is taking on values predominantly between 0.4 and 0.6 s–1 when ?S = 0.1 to 0.4, and 0.29 s–1, when ?S = 0.5. This study provides a practical means for estimating the volumetric mass transfer coefficient kLa in an industrial‐size bubble column slurry reactor, with a particular focus on the Fischer‐Tropsch process as well as high gas velocities and high slurry concentrations.  相似文献   

5.
The volumetric gas—liquid mass transfer coefficient (kLa) was measured for low‐ and medium‐consistency pulp suspensions using the cobalt‐catalyzed sulfite oxidation technique. Mass transfer rates were measured in a high‐shear mixer for a range of operating parameters, including the rotor speed (N = 10 to 50 rev/s), gas void fraction (Xg = 0.10 to 0.40) and fibre mass concentration (Cm = 0.0 to 0.10). kLa measurements were compared with the macroscale flow regime in the vessel (characterized using photographic techniques) and correlated with energy dissipation, gas void fraction and suspension mass concentration in the mixer. We found that gas‐liquid mass transfer was significantly reduced in pulp suspensions, even for low suspension concentrations. Part of this reduction was associated with dissolved components leached from the fibres into the liquid phase. This could account for reductions in kLa of up to 30% when compared with distilled water. The fibres further reduced kLa, with the magnitude of the decrease depending on the fibre mass concentration. Correlations were developed for kLa and compared with results available in the literature.  相似文献   

6.
The main objective of this work was to propose a new process for household fume incineration treatment: the droplet column. A feature of this upward gas‐liquid reactor which makes it original, is to use high superficial gas velocities (13 m s–1) which allow acid gas scrubbing at low energy costs. Tests were conducted to characterize the hydrodynamics, mass transfer performances, and acid gas scrubbing under various conditions of superficial gas velocity (from 10.0 to 12.0 m s–1) and superficial liquid velocity (from 9.4·10–3 to 18.9·10–3 m s–1). The following parameters characterized the hydrodynamics: pressure drops, liquid hold‐ups, and liquid residence time distribution were identified and investigated with respect to flow conditions. To characterize mass transfer in the droplet column, three parameters were determined: the gas‐liquid interfacial area (a), the liquid‐phase volumetric mass transfer coefficient (kLa) and the gas‐phase volumetric mass transfer coefficient (kGa). Gas absorption with chemical reaction methods were applied to evaluate a and kGa, while a physical absorption method was used to estimate kLa. The influence of the gas and liquid velocities on a, kLa, and kGa were investigated. Furthermore, tests were conducted to examine the utility of the droplet column for the acid gas scrubbing, of gases like hydrogen chloride (HCl) and sulfur dioxide (SO2). This is a process of high efficiency and the amount of pollutants in the cleaned air is always much lower than the regulatory European standards imposed on household waste incinerators.  相似文献   

7.
The gas–liquid volumetric mass transfer coefficient was determined by the dynamic oxygen absorption technique using a polarographic dissolved oxygen probe and the gas–liquid interfacial area was measured using dual‐tip conductivity probes in a bubble column slurry reactor at ambient temperature and normal pressure. The solid particles used were ultrafine hollow glass microspheres with a mean diameter of 8.624 µm. The effects of various axial locations (height–diameter ratio = 1–12), superficial gas velocity (uG = 0.011–0.085 m/s) and solid concentration (εS = 0–30 wt.%) on the gas–liquid volumetric mass transfer coefficient kLaL and liquid‐side mass transfer coefficient kL were discussed in detail in the range of operating variables investigated. Empirical correlations by dimensional analysis were obtained and feed‐forward back propagation neural network models were employed to predict the gas–liquid volumetric mass transfer coefficient and liquid‐side mass transfer coefficient for an air–water–hollow glass microspheres system in a commercial‐scale bubble column slurry reactor. © 2012 Canadian Society for Chemical Engineering  相似文献   

8.
An experimental investigation was made to measure interfacial area, a, and liquid‐side volumetric mass transfer coefficient, kLa, in a downflow bubble column by chemical methods viz., absorbing CO2 in aqueous sodium hydroxide and sodium carbonate/bicarbonate buffer solution respectively. The effect of gas and liquid flowrate and nozzle sizes on a and kLa were investigated. The experimental data obtained in the present system were analyzed and correlations were developed to predict a and kLa in terms of superficial gas velocity. The variation of a and kLa with specific power input were shown in graphical plot and compared with other gas‐liquid systems.  相似文献   

9.
In this work, the gas‐liquid mass transfer in a lab‐scale fibrous bed reactor with liquid recycle was studied. The volumetric gas‐liquid mass transfer coefficient, kLa, is determined over a range of the superficial liquid velocity (0.0042–0.0126 m.s–1), gas velocity (0.006–0.021 m.s–1), surface tension (35–72 mN/m), and viscosity (1–6 mPa.s). Increasing fluid velocities and viscosity, and decreasing interfacial tension, the volumetric oxygen transfer coefficient increased. In contrast to the case of co‐current flow, the effect of gas superficial velocity was found to be more significant than the liquid superficial velocity. This behavior is explained by variation of the coalescing gas fraction and the reduction in bubble size. A correlation for kLa is proposed. The predicted values deviate within ± 15 % from the experimental values, thus, implying that the equation can be used to predict gas‐liquid mass transfer rates in fibrous bed recycle bioreactors.  相似文献   

10.
H. Jin  D. Liu  S. Yang  G. He  Z. Guo  Z. Tong 《化学工程与技术》2004,27(12):1267-1272
The volumetric gas‐liquid mass transfer coefficient, kLα, for oxygen was studied by using the dynamic method in slurry bubble column reactors with high temperature and high pressure. The effects of temperature, pressure, superficial gas velocity and solids concentration on the mass transfer coefficient are systemically discussed. Experimental results show that the gas‐liquid mass transfer coefficient increases with the increase in pressure, temperature, and superficial gas velocity, and decreases with the increase in solids concentration. Moreover, kLα values in a large bubble column are slightly higher than those in a small one at certain operating conditions. According to the analysis of experimental data, an empirical correlation is obtained to calculate the values of the oxygen volumetric mass transfer coefficient for a water‐quartz sand system in two bubble columns with different diameter at high temperature and high pressure.  相似文献   

11.
A comprehensive experimental characterization of a small-scale bubble column bioreactor (60 mL) is presented. Bubble size distribution (BSD), gas holdup, and kLa were determined for different types of liquids, relevant fermentation conditions and superficial gas velocities uG. The specific interfacial area a and liquid mass transfer coefficient kL have been identified independent of each other to unravel their individual impact on kLa. Results show that increasing uG leads to larger bubbles and higher gas holdup. As both parameters influence a in opposite ways, no increase of a with uG is found. Furthermore, kL increases with increasing bubble size outlining that improved oxygen transfer is not the result of higher a but of risen kL instead. The results build the foundation for further simulative investigations.  相似文献   

12.
A special type of jet loop reactor (JLR), designed for continuous operation and short residence times was investigated with regard to its mass transfer behaviour, described by the volumetric mass transfer coefficient kLa. The jet stream and superficial gas velocities are varied in two JLRs of different sizes, equipped with different nozzles. Fully desalinated water, 0.08 molar NaCI solution and solutions of different concentration of carboxymethyl cellulose (CMC) are used as the liquid phase. A steady-state physical method is employed to determine kLa: air oxygen is purged from the liquid phase by gaseous nitrogen. The measurements show that the reactor is characterized by high power density and high mass transfer performance. No limit of mass transfer capacity was observed in the chosen ranges of volumetric gas and liquid flow rates, i.e. at a given jet stream velocity, the relationship between kLa and the superficial gas velocity is nearly linear. The investigations show that the mass transfer contributed by the jet stream largely depends on liquid phase composition.  相似文献   

13.
In this work the sulfite oxidation (SOM), dynamic pressure‐step (DPM) and gassing‐out (GOM) methods were compared for volumetric mass transfer coefficient measurement in an airlift reactor with internal loop. As a liquid phase both, non‐coalescent and coalescent media were used. Among the methods discussed here, the mass transfer coefficient (kLa) values obtained by the DPM appear as the most reliable as they were found to be independent of oxygen concentration in the inlet gas, which confirmed the physical correctness of this method. The difference between data measured using air and oxygen was not higher than 10%, which was comparable to the scatter of experimental data. It has been found that the sulfite oxidation method yielded kLa values only a little higher than those obtained by the DPM and the difference did not exceed 10%. Up to an inlet gas velocity (UGC) of ?0.03 m s?1 the GOM using oxygen as a gas medium gave kLa values in fact identical with those obtained by the DPM. At higher flows of the inlet gas, the GOM yielded kLa values as much as 15% lower. The enhancement in oxygen mass transfer rate determined in non‐coalescent media was estimated to be up to +15%, when compared with a coalescent batch. The experimental dependence of kLa vs the overall gas hold‐up was described by an empirical correlation. 1 Copyright © 2004 Society of Chemical Industry  相似文献   

14.
The mean relative gas hold up, ?g, and the volumetric mass transfer coefficients, kLa, were measured by steady state method in the first stage of a multistage countercurrent column 20 cm in diameter. Perforated plate trays with different bore hole diameters and free cross sectional area were applied. The height of the stage was varied. Newtonian (glycerol) and pseudo plastic (CMC) solutions were used as media.In general with increasing superficial gas velocity, with decreasing bore hole diameter and free cross sectional area of the perforated platé trays as well as with decreasing concentration and viscosity kLa increases.With increasing height of the bubbling layer kLa diminishes except for glycerol, for which no or only slight influence of the bubble layer height prevails.This effect for CMC diminishes with the increase of their concentration. With increasing specific power input kLa becomes larger. At constant power input the highest kLa is attained with the smallest bore hole diameter of the trays for CMC solutions. For glycerol no such an effect was found.  相似文献   

15.
This paper is the second part of a continuing study on mass transfer in a reciprocating plate column. The first part dealt with kLa. The bubble size distribution, the Sauter mean diameter and the interfacial area are the subject of this paper. The bubble size increases slightly with gas flow rate and decreases with agitation intensity above a “critical” level. The interfacial area increases with increasing agitation and aeration intensities, while the liquid flow rate and coalescing properties of the liquid have no significant effect. The specific interfacial area is correlated in terms of the superficial gas velocity and the maximum power consumption. The correlations obtained for kLa and a were used to calculate kL. It was found that kL depends on the agitation intensity and the bubble size.  相似文献   

16.
The hydrodynamics of bubble columns with concentrated slurries of paraffin oil (density, ρL = 790 kg/m3; viscosity, μL = 0.0029 Pa·s; surface tension, σ = 0.028 N·m1) containing silica particles (mean particle diameter dp = 38 μm) has been studied in columns of three different diameters, 0.1, 0.19 and 0.38 m. With increasing particle concentration, the total gas hold‐up decreases significantly. This decrease is primarily caused by the destruction of the small bubble population. The hold‐up of large bubbles is practically independent of the slurry concentration. The measured gas hold‐up with the 36% v paraffin oil slurry shows remarkable agreement with the corresponding data obtained with Tellus oil (ρL = 862 kg/m3; μL = 0.075 Pa·s; σ = 0.028 N·m?1) as the liquid phase. Dynamic gas disengagement experiments confirm that the gas dispersion in Tellus oil also consists predominantly of large bubbles. The large bubble hold‐up is found to decrease significantly with increasing column diameter. A model is developed for estimation of the large bubble gas hold‐up by introduction of an wake‐acceleration factor into the Davies‐Taylor‐Collins relation (Collins, 1967), describing the influence of the column diameter on the rise velocity of an isolated spherical cap bubble.  相似文献   

17.
The volumetric mass transfer coefficients, kLa, were measured by a steady state method in the first stage of a multistage countercurrent column 20 cm in diameter. Perforated plate trays with different bore hole diameters and free cross sectional area were employed. The height of the stage was varied.Viscoelastic fluids (PAA) solutions) were used as media. In general kLa increases with increasing superficial gas velocity, with decreasing bore hole diameter and free cross sectional area of the perforated plate trays as well as with decreasing concentration and viscosity.With increasing height of the bubbling layer kLa diminishes. This effect is lower with an increase of PAA concentration. A qualitative comparison of the rheologically corresponding media indicates that under similar conditions PAA solutions yield the highest, and the glycerol solution the lowest kLa values. With increasing specific power input kLa becomes larger. At constant power input the highest kLa is attained with the smallest bore hole diameter of the trays for CMC and PAA solutions. For glycerol no such effect was found.  相似文献   

18.
A transient back flow cell model was used to model the hydrodynamic behaviour of an impinging-jet ozone bubble column. A steady-state back flow cell model was developed to analyze the dissolved ozone concentration profiles measured in the bubble column. The column-average overall mass transfer coefficient, kLa (s?1), was found to be dependent on the superficial gas and liquid velocities, uG (m.s?1) and uL (m.s?1), respectively, as follows: kLa?=?55.58 · uG 1.26· uL 0.08 . The specific interfacial area, a (m?1), was determined as a = 3.61 × 103 · uG 0.902 · uL ?0.038 by measuring the gas hold-up (ε G?=?4.67 · uG 1.11 · uL ?0.05 ) and Sauter mean diameter, dS (mm), of the bubbles (dS?=?7.78 · uG 0.207 · uL ? 0.008 ). The local mass transfer coefficient, kL (m.s?1), was then determined to be: kL?=?15.40 · uG 0.354 · uL 0.118 .  相似文献   

19.
Gas holdup, effective interfacial area and volumetric mass transfer coefficient were measured in two and three phase downflow bubble columns. The mass transfer data were obtained using the chemical method of sulfite oxidation, and the gas holdup was measured using the hydrostatic technique. Glass beads and Triton 114 were used to study the effects of solids and liquid surface tension on the gas holdup and the mass transfer parameters a and kL a . The gas holdup in three phase systems was measured for non-wettable (glass bead) and wettable (coal and shale particles) solids.

The mass transfer data obtained in the downflow bubble column were compared with the values published for upflow bubble columns. The results indicate that in the range of superficial gas velocities (0.002-0.025) m/s investigated, the values of the mass transfer coefficient were of the same order of magnitude as those observed in upflow systems, but the values of interfacial area were at least two fold greater. Also, the results showed that the operating variables and the physical properties had different influences on a and kL a in the downflow bubble column. Correlations for a and kL a for the downflow bubble column are proposed which predict the data with adequate accuracy in the range of operating conditions investigated.  相似文献   

20.
The influence of organic additives (propanol, benzoic acid, isoamyl alcohol and carboxymethylcellulose) on the volumetric mass transfer coefficient, kLa, in an internal loop airlift reactor with low‐density particles (nylon‐6 and polystyrene) was investigated. The kLa values increased with increase in superficial gas velocity, Usg, and decreased with increase in solid loading. A draft tube to reactor diameter ratio, DR/D, of 0.4 gave maximum kLa values. The addition of benzoic acid and propanol increased the kLa values owing to their coalescence inhibiting characteristics. The addition of isoamyl alcohol decreased kLa, owing to the formation of rigid bubbles and recirculation of small bubbles having a low oxygen content. The kLa values decreased with increase in the concentration of the non‐Newtonian fluid carboxymethylcellulose (CMC). The proposed correlations predicted the experimental data well. Copyright © 2006 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号