首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biodegradable polyacrylates were produced by a series of novel copolymerization and/or crosslinking techniques using poly(vinyl alcohol) (PVA) moieties modified by the incorporation of olefinic structures. PVA was modified by a tosylation and/or detosylation reaction. The functionalized PVA was copolymerized and/or crosslinked with acrylic acid or its partially neutralized form to give crosslinked polyacrylates that could swell in water. Their swelling behavior was determined under load. Degradation studies were performed in α-chymotrypsin, trypsin, and papain solutions. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 817–829, 1998  相似文献   

2.
Poly(N‐vinyl pyrrolidone) (PVP) and poly (vinyl alcohol) (PVA) homopolymers and their blended samples with different compositions were prepared using cast technique and subjected to X‐ray diffraction (XRD) measurements, infrared (IR) spectroscopy, ultraviolet/visible spectroscopy, and thermogravimetric analysis (TGA). XRD patterns of homopolymers and their blended samples indicated that blending amorphous materials, such as PVP, with semicrystalline polymer, such as PVA, gives rise to an amorphous structure with two halo peaks at positions identical to those found in pure PVP. Identification of structure and assignments of the most evident IR ‐ absorption bands of PVP and PVA as well as their blends in the range 400–2000 cm?1 were studied. UV–vis spectra were used to study absorption spectra and estimate the values of absorption edge, Eg, and band tail, Ee, for all samples. Making use of Coats‐Redfern relation, thermogravimetric (TG) data allowed the calculation of the values of some thermodynamic parameters, such as activation energy E, entropy ΔS#, enthalpy ΔH, and free energy of activation ΔG# for different decomposition steps in the samples under investigation. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) (PVA) and poly(acrylamide‐co‐sodium methacrylate) poly(AAm‐co‐SMA) were prepared by the semi IPN method. These IPN hydrogels were prepared by polymerizing aqueous solution of acrylamide and sodium methacrylate, using ammonium persulphate/N,N,N1,N1‐tetramethylethylenediamine (APS/TMEDA) initiating system and N,N1‐methylene‐bisacrylamide (MBA) as a crosslinker in the presence of a host polymer, poly(vinyl alcohol). The influence of reaction conditions, such as the concentration of PVA, sodium methacrylate, crosslinker, initiator, and reaction temperature, on the swelling behavior of these IPNs was investigated in detail. The results showed that the IPN hydrogels exhibited different swelling behavior as the reaction conditions varied. To verify the structural difference in the IPN hydrogels, scanning electron microscopy (SEM) was used to identify the morphological changes in the IPN as the concentration of crosslinker varied. In addition to MBA, two other crosslinkers were also employed in the preparation of IPNs to illustrate the difference in their swelling phenomena. The swelling kinetics, equilibrium water content, and water transport mechanism of all the IPN hydrogels were investigated. IPN hydrogels being ionic in nature, the swelling behavior was significantly affected by environmental conditions, such as temperature, ionic strength, and pH of the swelling medium. Further, their swelling behavior was also examined in different physiological bio‐fluids. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 302–314, 2005  相似文献   

4.
Semi‐interpenetrating networks (Semi‐IPNs) with different compositions were prepared from poly(dimethylsiloxane) (PDMS), tetraethylorthosilicate (TEOS), and poly(vinyl alcohol) (PVA) by the sol‐gel process in this study. The characterization of the PDMS/PVA semi‐IPN was carried out using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and swelling measurements. The presence of PVA domains dispersed in the PDMS network disrupted the network and allowed PDMS to crystallize, as observed by the crystallization and melting peaks in the DSC analyses. Because of the presence of hydrophilic (? OH) and hydrophobic (Si? (CH3)2) domains, there was an appropriate hydrophylic/hydrophobic balance in the semi‐IPNs prepared, which led to a maximum equilibrium water content of ~ 14 wt % without a loss in the ability to swell less polar solvents. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Poly vinyl alcohol (PVA) with pendent carboxyl group was synthesized and verified. The collagen was chemical crosslinked with the produced PVA under the help of crosslinker. Then, the PVA–collagen hydrogels were prepared through the repeated freezing–thawing. Since the water states in hydrogels play an important role in the performance of the product, thermogravimetric (TG) analysis and differential scanning calorimeter (DSC) were conducted to study the different states of water. The results indicated that the weight ratio of nonfreezable water to dry gel in PVA–collagen hydrogels was about 25%. Meanwhile, the swelling behaviors in distilled water and 0.9% saline were studied. The one‐phase exponential associate equation can fit the process very well. Calculated from the simulation equation, the swelling ratios at equilibrium in distilled water and saline were 14.353 g/g dry gel and 14.205 g/g dry gel, respectively. The results illustrated that the ions in solution would decrease the swelling ratio of the hydrogel. At the same time, the lyophilization might have slighter influence to the microstructure of hydrogels and should be more suitable for the swelling research than heat drying. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
Grafting of poly(ε‐caprolactone) (PCL) and poly(lactide) (PLA) chains on poly(vinyl alcohol) backbone (PVA degree of hydrolysis 99%) was investigated using MgH2 environmental catalyst and melt‐grown ring‐opening polymerization (ROP) of ε‐caprolactone (CL) and L ‐lactide (LA), that avoiding undesirable toxic catalyst and solvent. The ability of MgH2 as catalyst as well as yield of reaction were discussed according to various PVA/CL/MgH2 and PVA/LA/MgH2 ratio. PVA‐g‐PCL and PVA‐g‐PLA were characterized by 1H‐ and 13C‐NMR, DSC, SEC, IR. For graft copolymers easily soluble in tetrahydrofuran (THF) or chloroform, wettability and surface energy of cast film varied in relation with the length and number of hydrophobic chains. Aqueous solution of micelle‐like particles was realized by dissolution in THF then addition of water. Critical micelle concentration (CMC) decreased with hydrophobic chains. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
The graft reaction of succinic anhydride onto poly(vinyl alcohol) (PVA) was catalyzed by p‐toluenesulfonic acid monohydrate in solid state. The infrared spectra and 1H‐NMR spectra confirmed that succinic anhydride was successfully grafted onto PVA backbone. The influences of reaction temperature, reaction time, the amount of succinic anhydride, and the amount of catalyst on the graft reaction were studied. Uncrosslinked PVA graft copolymer with grafting degree up to about 6.5% could be obtained under low reaction temperature, short reaction time, and low amount of catalyst, whereas crosslinked PVA with high gel content could be obtained under high reaction temperature, long reaction time, and high amount of catalyst. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 848–852, 2007  相似文献   

8.
Aqueous solutions of poly(vinyl alcohol) and poly(vinyl pyrrolidone) are blended and films are produced by casting method with the further intention of being used as bio‐materials with latent medical application. Glutaraldehyde, 4,4′‐diazido‐2,2′‐stilbenedisulfonic acid disodium salt tetra‐hydrate are used as crosslinker agents, whereas lactic acid is the plasticizer in the blend. The obtained films are characterized by differential scanning calorimetry (DSC), mechanical properties, swelling and solubility behavior. DSC measurements show that the blends exhibit a single glass transition temperature indicating that they are miscible, even in the presence of the plasticizer and crosslinker agents. By the combination of all mentioned additives, a relevant enhancement of the swelling is observed, accompanied by a stabilization of the solubility during the tested time. Finally, mechanical properties show an appropriate performance in the studied parameters. As a consequence, the obtained films could be suitable for use as medium or long‐term implants. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
Polymer/clay composite hydrogels were prepared based on PVA hydrogels containing 3–10 wt.‐% MOM. Their microstructure and morphology were studied by FT‐IR, WAXS and SEM, whereas the interactions between MOM and PVA were evaluated by thermal analyses. The swelling ratios for the PVA/MOM hydrogels decrease with increasing MOM content. WAXS results indicate that MOM was intercalates, and DSC results show a strong interaction between PVA and MOM. This interaction results in a stable network, which is confirmed by the elastic modulus and the thermal decomposition behavior of the hydrogels. Therefore, MOM acts as a co‐crosslinker, improving the stability of the network.

  相似文献   


10.
An effective method for the grafting of poly(acrylic acid) on polypropylene fibers has been developed, using diphenyl and a dispersing agent (NNO) in the grafting bath as additives to facilitate the grafting process. The method makes it possible to obtain high grafting degrees of poly(acrylic acid) on polypropylene fibers with a minimal quantity of homopolymer as a side product. The effect of grafting degree on the moisture absorption and swelling of the modified fibers has been examined and described with mathematical equations. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2295–2299, 2002  相似文献   

11.
Poly(vinyl alcohol) (PVA) grafted with poly(lactide‐co‐glycolide) and cross‐linked as a material of increased hydrophobicity relative to PVA was produced. The properties were examined with respect to the mass loss, water uptake, hydrophilicity, and mechanical characteristics upon hydrolytical degradation. The hydrogels investigated display water uptake increasing with degradation time because of increasing hydrophilicity. The mass loss amounts up to 15% after eight weeks of degradation. The mechanical properties of the hydrogels are within the range of those of natural tissue, the E modulus is 18 MPa, or even 100–200 MPa, depending on the structure of material. The mechanical characteristic and their dependence degradation show the most recognizable correlation with the chemical structure. Studies of the topography of degraded samples (scanning electron microscopy) and IR measurements demonstrate the degradation to occur at slow rate due to the high degree of grafting. The mass loss is rather low and a bulk degradation mechanism takes place. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Crosslinked poly(vinyl alcohol) (CPVA) microspheres were first prepared via the suspension polymerization of vinyl acetate and the alcoholysis of poly(vinyl acetate). Afterwards, a two‐step method involving graft polymerization and Hofmann degradation was used to prepare functional poly(vinyl amine)‐grafted crosslinked poly(vinyl alcohol) (PVAm–CPVA) microspheres, onto which poly(vinyl amine) (PVAm) macromolecules were grafted. The graft polymerization of acrylamide (AM) on CPVA microspheres was performed with cerium salt as the initiator in an acidic aqueous medium, resulting in polyacrylamide (PAM)‐grafted CPVA microspheres. Subsequently, the grafted PAM was transformed into PVAm via the Hofmann degradation reaction, and PVAm–CPVA microspheres were prepared. The effects of the main factors on the graft polymerization and Hofmann degradation were examined, and the reaction mechanisms were researched in depth. The experimental results showed that for the graft polymerization of AM on CPVA microspheres initiated by cerium salt, the acid concentration and the amount of cerium salt affected the grafting degree of PAM greatly. For the Hofmann degradation reaction of the grafted PAM, the amination degree of PVAm–CPVA microspheres was obviously affected by the amount of sodium hypochlorite in the presence of sodium hydroxide. The preliminary adsorption tests showed that PVAm–CPVA microspheres were multifunctional and had strong adsorption ability for Fe(III) ions by chelation action and for chromate ions (CrO) by strong electrostatic interactions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
A study was made to modify water‐soluble poly(vinyl alcohol) (PVA) by grafting acrylic acid and styrene (AAc/Sty) comonomers using gamma rays as an initiator. The factors that affect the preparation process and grafting yield were studied and more economical grafts under the most favorable reaction conditions were obtained. It was found that the high degree of grafting in such systems was obtained in the presence of an ethanol–water mixture in which water plays a significant role in enhancing the graft copolymerization. The critical amount of water to afford the maximum grafting yield was evaluated. The effect of the comonomer composition on the grafting yield was also investigated and it was observed that using a mixture of AAc/Sty monomers influences the extent of grafting of each monomer onto the PVA substrate and the phenomenon of synergism occurs during such a reaction. Also, the degree of grafting increases as the content of the solvent decreases in the reaction medium. However, the grafting yield increased as the total dose increased. The graft copolymer was characterized by IR and UV spectroscopic methods. The permeation of heavy metals such as Ni and Co through the grafted membranes was investigated and the efficiency of the separation process was also determined. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 806–815, 1999  相似文献   

14.
Thermal analysis (TGA and DTA) of samples of PAA, PVP, PAA–PVP complexes, containing different weight fractions of PAA and ternary polymer–metal–polymer complexes, were studied. The activation energy parameters for the thermal degradation were also calculated. The study of the effect of FeCl3, NiCl2, and Ni(NO3)2 on the TGA and DTA curves of the complexes showed that the decompositions are dependent on the concentrations and the nature of the metal ions. The DTA traces of PAA–PVP complex containing FeCl3, NiCl2, and Ni(NO3)2 showed that the treatment of the complex with these metal ions causes considerable changes in the thermal decomposition of PAA–PVP complex. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4049–4057, 2006  相似文献   

15.
Graft reaction of acrylamide (AM) and 4‐vinyl pyridine (4‐VP) onto ultra‐low molecular weight poly(vinyl alcohol) by ceric (IV) ion initiation had been systematically investigated; and the graft conditions were optimized by studying the effect of monomer/initiator concentration, solvents composition, reaction time and temperature. At optimized conditions, the maximum grafting efficiency and grafting ratio was ~ 50% and 51%, respectively with the presence of AM, whereas they decreased to 19% and 23%, respectively, without the presence of AM. Thermogravimetric analysis showed that as‐resulted graft copolymer had a lower thermal stability than homopolymer PVA. FTIR and 1H‐NMR confirmed chemical structure of as‐synthesized graft copolymer. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
A facile synthesis concept focusing on the poly(vinyl alcohol) (PVA) concentration induced interfacial energy effects in seed swelling polymerization was realized for the successful fabrication of a series of monodispersed poly(methyl methacrylate) (PMMA) microparticles with four crosslinking agents, 2,2‐bis[(methacryloyloxy)methyl]butyl methacrylate, 1,2‐ethanediyl bis(2‐methylacrylate), 1,3‐divinylbenzene and 1,2‐ethanediyl diacetate. We revealed a special role of PVA in regulating the diffusion of crosslinking agents as well as the swelling degree of latex seeds and, more noticeably, the consequent improved mechanical properties of the crosslinked PMMA microparticles formed. The highest recovery rate obtained from the PMMA microparticles with 0.6 wt% PVA approached 67%, which is higher than or comparable to reported values. This work not only developed a new facile synthesis approach for producing highly uniform tough crosslinked PMMA microparticles for more potential applications but also provided valuable insights into fundamental aspects of seed swelling polymerization. © 2019 Society of Chemical Industry  相似文献   

17.
A series of novel hydrogels were prepared from acrylic acid (AA), N‐vinyl pyrrolidone (NVP), and chitosan by photopolymerization. The swelling behavior, gel strength, and drug release behavior of the poly(AA/NVP) copolymeric hydrogels and corresponding interpenetrating polymer network hydrogels were investigated. Results showed that the swelling ratios for the present hydrogels decreased with an increase of NVP content in the gel, but the gel strength increased with an increase of NVP content in the gel. Results also showed that the drug‐release behavior for the gels is related to the ionicity of drug and the swelling ratio of the gel. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2135–2142, 2004  相似文献   

18.
倪靖滨  董伟  侯静  刘宇光 《化学工程师》2009,23(7):56-58,73
简要评述了聚乙烯醇水凝胶的制备方法,分析了各种方法的优点和缺点,介绍聚乙烯醇辐照交联的基本原理,并展望了辐射交联聚乙烯醇水凝胶研究及应用前景.  相似文献   

19.
Poly(vinyl alcohol) (PVA) was dissolved in the water to make a 10 wt % aqueous solution, and polydimethylsiloxane (PDMS) was mixed with 1 wt % 2,2‐dimethyl‐2‐phenylacetophenone (DMPAP) and 0.5 mol % methylenebisacrylamide (MBAAm) in isopropyl alcohol. This mixture was added to a PVA aqueous solution and heated at 90°C for 7 h. Various crosslinked networks were prepared at different molar ratios of PVA/PDMS (1:1, 1:3, and 3:1). The characterization of PVA/PDMS crosslinked networks was determined by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), a universal testing machine (UTM), and the equilibrium water content (EWC). The DSC melting endotherms showed, at 219.49°C, a sharp endothermic peak of PVA, and PVA/PDMS crosslinked networks had melting peaks close to this point. The value of EWC increased with the content of PVA in the crosslinked networks, simultaneously depending on the temperature. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 957–964, 2002  相似文献   

20.
The physical properties of poly(vinyl chloride) (PVC) and poly(N‐isopropylacrylamide) [poly(NIPAAm)] blend systems, and their corresponding graft copolymers such as PVC‐g‐NIPAAm, were investigated in this work. The compatible range for PVC–poly(NIPAAm) blend systems is less than 15 wt % poly(NIPAAm). The water absorbencies for the grafted films increase with increase in graft percentage. The water absorbencies for the blend systems increase with increase in poly(NIPAAm) content within the compatible range for the blends, but the absorbencies decrease when the amount of poly(NIPAAm) is more than the compatible range in the blend system. The tensile strengths for the graft copolymers are larger than the corresponding blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 170–178, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号